MSX Village forum

Salle de Jeux Liste des jeux MSX: le retour

Franck Membre non connecté

Maire-adjoint

Rang

Avatar

Association

Inscrit le : 02/10/2009 à 22h54

Messages: 3295

Le 06/05/2020 à 12h57

Reprise du message précédent

C'est noté, je mets quelle année de sortie ? 2020 ? :D
   
Sector28 Membre non connecté

Villageois

Rang

Avatar

Groupe : Shoutbox

Inscrit le : 12/05/2018 à 23h00

Messages: 553

Le 06/05/2020 à 14h20
haha.. :lol

Moi, je mettrais la date du copyright qui s'affiche sur l'écran du MSX.

Zork I : 1982
Zork II : 1981
Zork III : 1982
Suspended : 1983


Toute matrice carrée sur un corps K, dont le polynôme caractéristique est scindé, est semblable à une matrice de Jordan. Cette réduction est unique à l'ordre des blocs près. De plus, toute matrice carrée nilpotente sur un corps K est semblable à une matrice de Jordan dont chaque bloc est associé à la valeur 0. Évidement, cette réduction est encore unique à l'ordre des blocs près...
:)
   
Jipe Membre non connecté

Maire-adjoint

Rang

Avatar

Association

Inscrit le : 02/10/2009 à 19h41

Messages: 10420

Le 06/05/2020 à 14h29
bizarre que Zork I soit sorti en 1982 avant Zork II
bug dans la date du jeu ?


:noel
Site web    
Sector28 Membre non connecté

Villageois

Rang

Avatar

Groupe : Shoutbox

Inscrit le : 12/05/2018 à 23h00

Messages: 553

Le 06/05/2020 à 14h33
Il s'agit de rééditions...


Toute matrice carrée sur un corps K, dont le polynôme caractéristique est scindé, est semblable à une matrice de Jordan. Cette réduction est unique à l'ordre des blocs près. De plus, toute matrice carrée nilpotente sur un corps K est semblable à une matrice de Jordan dont chaque bloc est associé à la valeur 0. Évidement, cette réduction est encore unique à l'ordre des blocs près...
:)
   
Sector28 Membre non connecté

Villageois

Rang

Avatar

Groupe : Shoutbox

Inscrit le : 12/05/2018 à 23h00

Messages: 553

Le 06/05/2020 à 15h17
Franck, tu peux aussi ajouter Deadline de Infocom, 1982, version spécifique MSX 2(+) et Turbo R.


Toute matrice carrée sur un corps K, dont le polynôme caractéristique est scindé, est semblable à une matrice de Jordan. Cette réduction est unique à l'ordre des blocs près. De plus, toute matrice carrée nilpotente sur un corps K est semblable à une matrice de Jordan dont chaque bloc est associé à la valeur 0. Évidement, cette réduction est encore unique à l'ordre des blocs près...
:)
   
Franck Membre non connecté

Maire-adjoint

Rang

Avatar

Association

Inscrit le : 02/10/2009 à 22h54

Messages: 3295

Le 06/05/2020 à 15h52
Yes Sir ! ^^
   
Sector28 Membre non connecté

Villageois

Rang

Avatar

Groupe : Shoutbox

Inscrit le : 12/05/2018 à 23h00

Messages: 553

Le 07/05/2020 à 19h15
Enchanter , Sorcerer, et Spellbreaker de Infocom, à ajouter ;)


Toute matrice carrée sur un corps K, dont le polynôme caractéristique est scindé, est semblable à une matrice de Jordan. Cette réduction est unique à l'ordre des blocs près. De plus, toute matrice carrée nilpotente sur un corps K est semblable à une matrice de Jordan dont chaque bloc est associé à la valeur 0. Évidement, cette réduction est encore unique à l'ordre des blocs près...
:)
   
Sector28 Membre non connecté

Villageois

Rang

Avatar

Groupe : Shoutbox

Inscrit le : 12/05/2018 à 23h00

Messages: 553

Le 23/05/2020 à 19h42
Gall Force, c'est une megarom


Toute matrice carrée sur un corps K, dont le polynôme caractéristique est scindé, est semblable à une matrice de Jordan. Cette réduction est unique à l'ordre des blocs près. De plus, toute matrice carrée nilpotente sur un corps K est semblable à une matrice de Jordan dont chaque bloc est associé à la valeur 0. Évidement, cette réduction est encore unique à l'ordre des blocs près...
:)
   
Répondre
Vous n'êtes pas autorisé à écrire dans cette catégorie