Salle de Jeux Liste des jeux MSX: le retour

haha.. 
Moi, je mettrais la date du copyright qui s'affiche sur l'écran du MSX.
Zork I : 1982
Zork II : 1981
Zork III : 1982
Suspended : 1983

Moi, je mettrais la date du copyright qui s'affiche sur l'écran du MSX.
Zork I : 1982
Zork II : 1981
Zork III : 1982
Suspended : 1983
Un endomorphisme u d'un espace vectoriel E est trigonalisable si et seulement si E est la somme directe des sous-espaces caractéristiques de u, c'est-à-dire si et seulement s'il existe une base de E formée de vecteurs propres généralisés de u. Cette caractérisation rejoint celle donnée à l'aide du polynôme caractéristique, qui doit être scindé pour que l'endomorphisme soit trigonalisable.


Il s'agit de rééditions...
Un endomorphisme u d'un espace vectoriel E est trigonalisable si et seulement si E est la somme directe des sous-espaces caractéristiques de u, c'est-à-dire si et seulement s'il existe une base de E formée de vecteurs propres généralisés de u. Cette caractérisation rejoint celle donnée à l'aide du polynôme caractéristique, qui doit être scindé pour que l'endomorphisme soit trigonalisable.


Franck, tu peux aussi ajouter Deadline de Infocom, 1982, version spécifique MSX 2(+) et Turbo R.
Un endomorphisme u d'un espace vectoriel E est trigonalisable si et seulement si E est la somme directe des sous-espaces caractéristiques de u, c'est-à-dire si et seulement s'il existe une base de E formée de vecteurs propres généralisés de u. Cette caractérisation rejoint celle donnée à l'aide du polynôme caractéristique, qui doit être scindé pour que l'endomorphisme soit trigonalisable.


Enchanter , Sorcerer, et Spellbreaker de Infocom, à ajouter

Un endomorphisme u d'un espace vectoriel E est trigonalisable si et seulement si E est la somme directe des sous-espaces caractéristiques de u, c'est-à-dire si et seulement s'il existe une base de E formée de vecteurs propres généralisés de u. Cette caractérisation rejoint celle donnée à l'aide du polynôme caractéristique, qui doit être scindé pour que l'endomorphisme soit trigonalisable.


Gall Force, c'est une megarom
Un endomorphisme u d'un espace vectoriel E est trigonalisable si et seulement si E est la somme directe des sous-espaces caractéristiques de u, c'est-à-dire si et seulement s'il existe une base de E formée de vecteurs propres généralisés de u. Cette caractérisation rejoint celle donnée à l'aide du polynôme caractéristique, qui doit être scindé pour que l'endomorphisme soit trigonalisable.

Répondre
Vous n'êtes pas autorisé à écrire dans cette catégorie