Affichage Public Jeu de l'été 2021 V3.00 ou tout le monde peut poster !!!

Reprise du message précédent

Un endomorphisme u d'un espace vectoriel E est trigonalisable si et seulement si E est la somme directe des sous-espaces caractéristiques de u, c'est-à-dire si et seulement s'il existe une base de E formée de vecteurs propres généralisés de u. Cette caractérisation rejoint celle donnée à l'aide du polynôme caractéristique, qui doit être scindé pour que l'endomorphisme soit trigonalisable.


cheval
Un endomorphisme u d'un espace vectoriel E est trigonalisable si et seulement si E est la somme directe des sous-espaces caractéristiques de u, c'est-à-dire si et seulement s'il existe une base de E formée de vecteurs propres généralisés de u. Cette caractérisation rejoint celle donnée à l'aide du polynôme caractéristique, qui doit être scindé pour que l'endomorphisme soit trigonalisable.



Un endomorphisme u d'un espace vectoriel E est trigonalisable si et seulement si E est la somme directe des sous-espaces caractéristiques de u, c'est-à-dire si et seulement s'il existe une base de E formée de vecteurs propres généralisés de u. Cette caractérisation rejoint celle donnée à l'aide du polynôme caractéristique, qui doit être scindé pour que l'endomorphisme soit trigonalisable.



Un endomorphisme u d'un espace vectoriel E est trigonalisable si et seulement si E est la somme directe des sous-espaces caractéristiques de u, c'est-à-dire si et seulement s'il existe une base de E formée de vecteurs propres généralisés de u. Cette caractérisation rejoint celle donnée à l'aide du polynôme caractéristique, qui doit être scindé pour que l'endomorphisme soit trigonalisable.


Un jeu nul, mais très connu

Un endomorphisme u d'un espace vectoriel E est trigonalisable si et seulement si E est la somme directe des sous-espaces caractéristiques de u, c'est-à-dire si et seulement s'il existe une base de E formée de vecteurs propres généralisés de u. Cette caractérisation rejoint celle donnée à l'aide du polynôme caractéristique, qui doit être scindé pour que l'endomorphisme soit trigonalisable.


paix
Un endomorphisme u d'un espace vectoriel E est trigonalisable si et seulement si E est la somme directe des sous-espaces caractéristiques de u, c'est-à-dire si et seulement s'il existe une base de E formée de vecteurs propres généralisés de u. Cette caractérisation rejoint celle donnée à l'aide du polynôme caractéristique, qui doit être scindé pour que l'endomorphisme soit trigonalisable.


Dan, sors de ce corps !! 


Un endomorphisme u d'un espace vectoriel E est trigonalisable si et seulement si E est la somme directe des sous-espaces caractéristiques de u, c'est-à-dire si et seulement s'il existe une base de E formée de vecteurs propres généralisés de u. Cette caractérisation rejoint celle donnée à l'aide du polynôme caractéristique, qui doit être scindé pour que l'endomorphisme soit trigonalisable.


Disons que si tu donne la réponse
, c'est plus facile 

Ce jeu est une grosse D......... A vous de juger
Pourtant plein de collectionneurs l'on, histoire d'avoir la collection complète 

Note : bien le site goopics avec le lien direct pour ne pas hébergé des images éphémères sur le site
Edité par
TurboSEB
Le 27/08/2021 à 10h22



Ce jeu est une grosse D......... A vous de juger



Note : bien le site goopics avec le lien direct pour ne pas hébergé des images éphémères sur le site


MSX 1&2 + Moniteurs+divers (environ 0.70Tonnes)





Répondre
Vous n'êtes pas autorisé à écrire dans cette catégorie