Programmation

Nombre à virgule fixe

Cet article a été mis à jour, vous consultez ici une archive de cet article!
Un nombre à virgule fixe, c'est simplement un nombre réel (par ex. 3,14) qu'on va coder sur un nombre entier en lui appliquant un facteur (un multiplicateur).
L'intérêt est de pouvoir manipuler de nombres avec une précision inférieur à 1, tout en gardant les bonnes performances de manipulation de nombre entier.

Principe



Pour comprendre le principe, il suffit d'imaginer un programme qui utiliserait le mètre comme unité finale mais qui aurait besoin à un moment de pouvoir déplacer un objet de moins d’une unité, disons 0,2 m.
Vu qu'il serait bien trop lourd pour nos vénérables MSX de travailler avec de vrais nombres à virgule flottante (comme les float du C), l'astuce pourrait simplement être de stocker les nombres et de faire ses calculs sous la forme Val = mètres * 100 (en cm donc), puis de convertir en mètre quand c'est nécessaire (mètres = Val / 100). Du coup, pour ajouter 0,2 m, on ajouterait la valeur entière 0,2 * 100 (c-à-d 20). À l'inverse, le nombre entier 4213 représenterait en fait 42,13 m.
Un tel format serait un nombre à virgule fixe de 2 décimales (100).
Simple. :)

Format Qm.n



Comme les divisions/multiplications par 100 sont coûteuses, on va plutôt utiliser des facteurs puissance de 2 (1, 2, 4, 8, 16, etc.) comme base pour la partie fractionnelle. Du coup, les divisions/multiplications peuvent être remplacés par des décalages de bits qui sont énormément moins coûteux.
Sur un entier 8 ou 16-bits (les 32-bits sont souvent trop coûteux pour nos Z80), on va donc décider du nombre de bits qui serviront à coder la partie entière et de ceux (le reste) qui serviront à coder la partie fractionnelle.
C’est le format Q ! Ou plutôt « Qm.n ». (cf. https://en.wikipedia.org/wiki/Q_(number_format))

Par ex., un nombre 8-bits codé au format Q4.4, utilise 4-bits pour l’entier et 4-bits pour la fraction. Pour convertir une valeur en Q4.4, il suffit de décaler le nombre 4 fois vers la gauche (x << 4), Pour convertir un Q4.4 en valeur, il suffit de décaler le nombre 4 fois vers la droite (x >> 4). Si on l’utilise pour stocker un nombre non signé, on pourra coder dans un Q4.4 des nombres allant de 0 à 15,9375 (255/16) avec une précision de 0,0625 (1/16).
On peut utiliser avec le Q4.4 n’importe quelles opérations mathématiques de base tant que tous les termes sont au même format.

A noter que pour les entiers signés, certains excluent le bit de signe dans la notation.
Du coup, Q7.8 ⇒ 1-bit de signe, 7-bits entier, 8-bits fractionnel.

Exemples



Il existe autant de Q qu’ils y a de combinaisons de bits (ne pas sortir cette phrase de son contexte, hein :oups).
Voici quelques exemples que j’utilise :
- Q2.6 : Entier 8-bits qui permet de coder des chiffres entre -1,0 et 1,0 avec une précision de 0,015625. Très utile pour stocker des vecteurs de direction par ex.
- Q8.8 : Entier 16-bits avec partie entière et fractionnelle sur 8 bits. Très performant à utiliser avec un nombre non-signé. Sinon, il faut prendre qq précautions.
- Q6.10 : Entier 16-bits avec partie entière de 6 bits et fractionnelle sur 10 bits. Permet de manipuler les données en Ko (avec un facteur 1024). Utile pour les petits nombre ayant besoin d’une très grande précision (~0,0001).

Conversion



On peut évidemment passer d'un Q à l'autre avec de simple décalage de bits (:oups).
Par ex. :
- Q4.4 << 2 ⇒ Q2.6
- Q8.8 >> 4 ⇒ Q12.4
(en cas de valeur signée négative c'est un peu plus compliqué car il faut préserver le signe)

Liste exhaustive



Voici l'ensemble des format Qm.n possibles pour les entiers 8 et 16-bits avec leur valeur de précision et leurs bornes :


Dispo aussi au format PDF Qm.n.pdf