

MAUBERT ELECTRONIC
 IMPORTATEUR EXCLUSIF-FRANCE-MONACO-ANOORRE 49, d Saint Germain 75005 PARIS-Télex 203939 F

LOGICIELS pOUR MSX

 HAL-KONAMI
GARTOUCHES STANDARD

Compatibles avec: Sanyo Canon - Yamaha - Sony Philips -Goldstar - Yeshica - Spectravidfo - Hitachi - Pioneer National Mitsulishi - Casio - Toshila - Yeno-etc.

NOUVEAUTÉS

PING PONG

Mesurez vous au Ping Pong contre l'ordinateur ou un partenaire.

ROAD FIGHTER

LOGICIEL EDUCATIF CALCUL

CALCUL MENTAL (BALANCE)

Jouez en vous exerc̣ant au calcul mental. 4 opérations : niveaux de difficultés croissants. Développe la réflexion et la décision précise et rapide.

ogrammes d'enseignement musi- cal assisté par ordinateut DDDY-2 Pogramme evolue de conception aphique. Il offre pràce à la boule CAT des passiblites de D.A.O. servees ayr systemes prolessionels 16 couleurs, ellel de zoom, tation, ellacement, ete

KUNG FU

Arts martiaux : mains nues contre des adversaires équipés de 5 armes différentes.

ET TOUJOURS LES CATALOGUES A SUCCES

STEP UP	FRUIT SEARCH
PICTURE PUZZLE	SUPER SNAKE
MI CHIN	SPACE TROUBLE
BUTAMARU	HEAVY BOXING
DRAGON ATTACK	SPACE ATTACK
SUPER BILLARD	ROLLER:BALL

ATHLETIC LAND	ANTARTIC ADVENTURE
AYPER OLYMPIC I	HYPER OLYMPIC 2
TRACK and FIELD I	
TRACK and FIELD 2	
SUPER COBRA	CIACUS CHARLIE
MONKEY ACADEMY	TIME PILOT
COMIC BAKERY	HYPER SPORTS 2
SIKY JAGUAR	KING VALLEY
MOPIRANGER	HYPER SPORTS I

HIT PARADE

MEX $\mathrm{M}: \mathrm{A}: \mathrm{G}: \mathrm{A}: \mathrm{Z}: \mathrm{I}: \mathrm{N}: \mathrm{E}$

SOMMAIRE
No 3
NOVEMBRE-DECEMBRE 1985

News

Softs

Ludiques 6
Utilitaires 10
Reportage
Nice Ideas, nouveau venu dans le monde MSX 7
Le MSX, c'est lui 16
Tests
Le Sony HB-501F 9
Le Spectravidéo X'Press 738 11
Imprimante Star ST 80 20
Liures17
Trucs ef asfuces
La carte RS 232 21
Adresses d'accès du synthétiseur Yamaha 29
42 colonnes en 1 mode screen 2 29
Listings
Pitman 32
Taquin 34
Thésée 36
volal le résultat de notre sondage effectué aupres de distributeurs. Nous vous présentons donc les logiciels les mieux vendus (qui ne correspondent pas forcément \dot{d} nos propres 'coups de coeur") Ils refiétent en tous les cas les gouts de la majorité du public.
Nous sondons directement les distributeurs isi vous retes et souhiaiter participer a ce hit, faltes-le nous savoir par courrier ou en teliéphonant directement à notre rédaction.

Ludiques

1. Mandragore - Infogrames - 250 F
2. Sorcery - Virgin - 150
3. Lode Runner - Software Projects - 349 F
4. Hole in One - Hal - 285 F
5. Ultra Chess - Anorog - 190 F
6. Ping Pong - Konami - 240 F
7. Jump Jet - Anirog - 185 F
8. Super Foot Ball - Sony - 290 F
9. Bounder Dash - 150 F
10. Alpha Squadron - Sony - 240 F

Pédagogiques

Kit éducatif CM 2 (préparation à l'entrée en 6°) - Hatier - 490 F

Utilitaires

1. Aackotext - Aackosoft - 545 F
2. Odin - Loriciels - 265 F
3. Tex - Infogrames - 349 F

Notre sondage a etté effectue grace aux distributeurs sulvents Hachette Micro-Informatique, 24, bd St-Michel, 75006 Paris.
Lutec, 58, rue de Rome, 75008 Paris.
Video-Play Disc, 139, av, Jean-Jaures, 75019 Paris.
Vidéoshop, 50, rue de Richelleu, 75001 Paris et 251, bd Raspail 75014 Paris.

Directeur de la publication, redacteur en chef: Jcan Kaminsky. Coordination de ta rédaction: Philippe Lamigeon. Rédaction: M. Garric, Jean-Marc Jungmann, Denis Krieger, Daniel Martin, Jean-Pierre Roche. Secrétaire de rédaction: Mireille Massonnet. Maquette: Mare Soria. Régie publicitaire: Néo-Média, 55, avenue Jean-Jaurés, 75019 Paris. Tel. 42.41.81.81. Jean-Yves Primas. Commission paritaire: en cours. Dépôt légal: 4e trimestre 1985. Imprimé par SNIL-RBI. Edité par: Laser Magazine, 55, avenue Jean-Jaures, 75019 Paris.
MSX MAGAZINE n'a aucun lien avec les sociétés Mictosof et ASCII Corporation.

Endireet des clubs

Club Informatique du Standard MSX

Un nouveau club d'utilisateurs du MSX vient de se créer à Toulon. Cette association régie par la loi de 1901 se propose plusieurs axes de travail :

- servir de point de rencontre pour tous les utilisateurs avertis ou debutants.
- organiser des cours d'initiation
en Basic ou en Assembleur, - promouvoir les applications industrielles et grand public comme les automatismes, jeux et programmes de gestion.
- développer le système musical Yamaha.
Programme certainement ambitieux pour un nouveau club.
mais qui va certainement intéresser plus d'un lecteur du sud de notre beau pays ! Nous esperons en tous cas que de telles activi-
tés réussiront à se dêvelopper. Chub Informatique du Standent MSX, II, nue Anarode Frunce, s3000 Toulom Cotue:

Les nouveautés musicales YAMAHA

Plusieurs nouveautes présenters par Yamaha lors du "Salon de la Musique" (Grunde Halle de la Villette, du II au IS septembre derniers) :
Une imprimante matricielle a 3 1.260 F , un lecteur de disquettes 3,5 pouces de I méra-octets au
prix et a la date de sortie indetermines, une souris a 9001 (aie :II), et six noureaus logiciels dout trois a caractère efhocatif pour l'apprencisxage de Thammone sur une guitare, eu un instrument a clavier.
En legesiel de creatiean graphi

HIT BIT. LE PREMIER SYSTE

SONY CRÉE LINTELLIGENCE ÉVOLUTIVE.

C'est nouveau. C'est SONY. C'est la naissance de la compatibilité dans le monde de la micro intormatique. Aujourdhui avec le systeme HIT BIT SONY, il n'y a plus des micro ordinateurs, des logis ciels, des périphériques, il y a un système logique. coherent et evolutif
Avec le systeme HIT BIT SONY il n'y a plus de problemes de connexion, d'élements inutlisables les uns avec les autres il y a compatibilité entre tous les elemments existants, mais aussi avec les élements qui seront crées demain et méme, aprés: demain
HIT BIT 75, HIT BIT 501 ou HIT BIT 500, quel que soit le micro ordinateur SONY que vous choisire?, il represente le premieqpas dans le monde de lintelligence évolutive, Tinteligence selon SONY

Prenons par exemple, let élèment du système, le micro ordinateut HIT BII 75.
Parce quill vous propose une torme dintelligence tout à la fors creative et ludique, pratique et concrete, il est idéal pour vous qui souhater maltriser l'informatique ou pour vos entants qui veulent sy initier C'est I'ordinateur "personnalise" Le HIT BIT 501 est un micro ordinateur tetes compact et tres complet. Magneto cassettes intégré, ooystick adaptable sur la marguente du clavier, banqua de données personnelles livcée avec le micro, que vous lubilisiez pour apprenctre ou pour jouer, la HIT BIT 501 estle micreardinateu de l'avenir. C'est fordinateut 'Compact'
Le HIT BIT 500 c'est lapproche protessionnelle selon SONY Avec lui, le systemme RII BII devent

un veritable systeme professionnel intégré, puis sant souple dutilisation
Clavier Azerty professionnel détaché avec pavé numérique sépare, lecteur de disquettes 3 pouces 1/2 (nouveau standard professionnel crée par SONY d'un millian d'octets, 3 ports d'extension. le HIT BIT 500 est l'ordinateur d'une toute nouvelle génération Que vous ayez choisi le HIT BIT 75, le HIT BIT 501 ou le HIT BIT 500, les pêripheriques SONY vous permettent d'accraite les possibilites et les performances de votre micro ordinateur. Lecteur de cassettos, lecteur de disquettes, cartouche de donnees, disquetles, createur praphique, imprimantes, poysticks, la gamme de péripheriques SONY comblera les plus exigeants

Initiation à la programmation, productivité personnelle, création graphique et musicate, peux đ'adresse, d'aventure ou de stratégie, il existe une multitude de logiciels SONY et chaque jour, il s'en crée davantage.
Et enfin, SONY présente son nouveau el superbe moniteut, le KX M CPI Equipé du tout nouveau tube Micro Black Trinitron, le KX 14 CP 1 integre la technologie la plus sophistiquêe pour vous oltair une haute resolution de limage Mieux detinie, plus contrastee, limage est aussi moins taligante pour les yeux, meme en cas de vision prolongée. Tous les elements du systeme HIT BII SONY utid sent le nouvesu standard international MSX depa adopte par de nombrecox abricants dans le monde Cest le standard de la com 5 atiblite. e'est depa le
standard SONY
Avec le systeme HIT BIT, premier systime venta blement nè de la compatibilte, SONY vous ouvre les portes d'un nouveau monde de la micro intormatique, dune nouvelle fortine dinteligance. Cis. telligence evolutive
Parce qu'elto a assimila Ferperience tu pares ef integré I enseignement du pressent, Pululipance evolutive sinscnt directement dans un futar qu'elle maitise defa Cest toute Finfeligence dy systame tit eit do soty

DANGEREUSEMENT VÔTRE!

Créateur : Domark
Distributeur: Eurêka informatique
Prix public: 150 F
Formal : cassetre
Genre : aventure
Configuration : $M S X$, magnéfocassette, manette en option.
Graphisme : * \star
Intêrêt : * **
Difficulté : $\star \star \star \star$
Appréciation : * * \star
Avec Dangereusement Vôtre vous voilà plongé dans la dernière aventure de James Bond... Vous devez poursuivre un criminel dans I'hôtel de Ville de San Francisco et le labyrinthe des galeries d'une ancienne
mine d'argent sous Silicon Valley... Le jeu utilise le principe des menus à fenêtre : ils vous permettent de sélectionner les actions et les objets qui font partie du jeu. Pour le reste vous déplacez votre personnage comme dans un jeu d'arcade. On joue également contre la montre en temps réel : une bombe explose au bout du temps imparti. La version essayée semble malheureusement affectée d'un certain nombre de "bugs" si bien que nos essais ont été assez limités. Une appréciation définitive sur ce jeu demandera donc un essai ultéricur.

PYRO-MAN

Ediseur : Nice ideas
Distributeur: VUf-Nathan
Prix public: 149 F
Format : casselte
Genre ; jeu d'action/strategie
Configuration : MSX 32 K , magndio-
casseite, maneite en option
Ginaphisme : * * *

Interele:***

Difficulte: * *
Appriciation : * * *
Le principe eat simple; vous êtes un pompier el vous devez éteindre les incendies allumés dans un batiment par un pyromane fou. Pour cela vous disposez de lances a incendies
(mals avec un tuyau de longueur limitée) et d'extincteurs (de capacité assez faible). Tout se complique quand les planchers brulent ou lorsque le pyromane vous assomme I D'autant plus qu'au rez-de-chaussée sont entreposées des calsses de feu d'artifice / Les protéger de l'incendie est l'objectif prioritaire... Le nombre de variables de ce jeu est trés elevé si bien qu'on peut essayer de multiples stratégies. Une cassette qui peut certainement faire partie de votre panoplie.

JE COMPTE!

Editeur: Nice Ideas
Distributeur: Vifl-Nathan
Prix public: 179 F
Format : cassette
Genre : jeu educatif
Configuration : MSX 32 K , magnelocassette, manelte en option
Graphisme : ** *
Intérêl: \star * *
Difficulte: *
Appréciation: $\star \star \star$
«Je compte» est un ensemble de jeux éducatifs pour enfants de 3 à 6 ans environ. Comme son titre l'indique on ne peut plus clairement le but est de leur apprendre a compter, plus
exactement à compter jusqu'a 9. Quatre jeux différents permettent de varier les plaisirs et les exercices. Dans tous les cas le logiciel associe une part de jeu à l'apprentissage proprement dit. "Testé" par des enfants de l'age requis ce programme a rencontré un succés certain. On peut seulement lui reprocher d'être, par nature, un peu limité dés que l'enfant sait compter sans erreur jusqu'à 9 il n'est plus guère éducatif ! Toutefois les personnages sont amusants, les couleurs agréables et il continue alors à servir de jouet pendant un certain temps...

MACADAM BUMPER

Criateur: Ere Informatique
Distributeur: Sony
Prix public: 170 F
Gente : arcade
Graphisme : $\star \star \star \star$
Intêner: : $\star \star \star \star$
Difficulte : **
Appréciation: * * * *
Macadam Bumper est un jeu de "flipper" bien connu. Precisons tout de suite que la version sur disquette essayde est une pre-version, la version définitive sera sur cassette. Qui n'en fonctionne pas moins trés bien ! On joue a Paide du clavier. Ce jeu dispose d'un menu vous permettant de redéfinir les touches utilisedes en fonction de la disposition de votre clavier et de vos goots personnels. 11 est egalement passible de modifier à volontéle "flipper" sur lequel vous joucz ce qui ourre, naturellement, des perspectives nouvelles... Les, Gnouveaux billards crets peurent due sauregardes sur la mémoire de masse
et réutilises quand on le souhaite. La redeffinition ou la création de nouveaux flippers ne porte pas seulement sur la position des differents हlements mais aussi sur la sensibilité de ces elements, l'inclinaison de l'appareil, etc, Tout, pratiquement, peut s'adapter a vos gout et a votre niveau de jeu. Les acharnés des flippers - et ils sont nombreux - vont avoir de quoi exercer leurs talents ! Naturellement on peut "pousser" la machine comme une vraie a l'aide de certaines touches et reggler la sensibilité du "Tilt". En pratique la balle est trés rapide et la simulation excellente. Seul petit probleme que nous avons relevé : nour avons rt́ussi a coincer la balle dans un bumper ce qui nous a permis d'atteindre le score de 715840 points sans gros efforts.. Tout cela ne permet pas en cause la qualie de ce programme qui devrait rapidemment s'aifirmer comme une vedete des leux sur ordinateur MSX.

BACKGAMMON

Importatear : Sony

Prix moyen : 190 F
Genre : jeu de jaquet ou Backgammon
Type : cartouche
Gruphisme : ****

Intérêt: | $\star * *$ |
| :---: |

Le Backgammon est un jeu très ancien connu sous le nom de jaquet. C'est un jeu de hasard autant que d'habileté : on place des mises, les pions étant déplacés selon le nombre de points obtenus par tirage aux dés
figurés sur le côté droit de l'écran. La règle du jeu nécessite un petit apprentissage, comme pour tout jeu de société où les subtilités des règles importent autant que le jeu. De quoi occuper ses soirées : trictrac, bredouille, ou normal, autant de nouvelles expressions à votre vocabulaire de jeux. On se laisse aisément séduire par le Backgammon, et on est surpris, dès la prise en mains, d'y avoir succombé pendant un bon nombre d'heures, sans avoir vu le temps passer.

MINICALC

Editeur: Nice Ideas Distributeur: V/AK-Nathan Prix public: 295 F
Format : cascelle

Genre: tableur

Confisuration: MSX 16 K , minimum, magnétocassette, imprimante en option
Documentation : **
Intérêt : * * *
Difficulte: **
Appréciation : *
Minicalc, comme son nom l'indique, est un tableur : un logiciel qui vous permet des calculs automatiques. Minicalc vous offre 63 colonnes et 255 lignes (comme le tableur le plus utilisé actuellement : Multiplan) ce qui vous fait 16065 cases à remplir éventuellement. Naturellement le nombre de cases réellement disponibles dépend de la mémoire dont dispose votre machine et il est tout a fait irréaliste de vouloir remplir toutes ces cases ! Le nombre de cases est la pour vous offrir de multiples possibilités suivant le problème traité : vous pouvez, par exemple, avoir besoin de deux colonnes de 100 cases
ou, inversement, de quatre lignes de 50 colonnes.
Ce dernier contact avec le tableur Minicale nous a semblé, dans l'ensemble, positif. Bon nombre de fonctions classiques des tableurs sont intégrées malgré une syntaxe un peu particulière. Toutefois ce tableur est très limité du coté des fonctions mathématiques : il se limite aux quatre opérations arithmétiques classiques auxquelles il faut ajouter la somme d'une série de cellules, leur valeur minimale, leur moyenne, la valeur absolue d'un champ, le nombre de champs non vides d'un bloc. Avec Minicale pas de fonctions mathématiques complexes, ni de fonctions financières, ni de fonctions logiques, il est évident que ce tableur n'est pas un concurrent pour les logiciels professionnels du même genre. Toutefois ses possibilités sont largement suffisantes pour de nombreux usages classiques (petite gestion et petite prévision financière). Il peut constituter également un bon moyen d'aborder le monde, souvent complexe, des tableurs.

Nice Ideas: un nouveau venu dans le monde des softs MSX

D'habitude, les petits concepteurs de logiciels grandissent, grandissent... (lorsque le succès les accompagne !). Ils passent de cette manière de la réalisation de jeux relativement simples, à des produits de plus en plus complexes, se lancent dans la conception de nouveaux langages, etc. C'est encore

Nice Idéas est, au début de son existence, l'œuvre de plusieurs programmeurs réunis autour de Tim Scanlan, auteur en 1977 du premier jeu de bridge sur micro «Bridge Challenger ». Pendant plusieurs années, cette équipe s'appelle Intellivision et n'est autre que le département européen de Mattel Electronics. Elle travaille alors sur gros systèmes (VAX) et réalise certains jeux de simulation de très haut niveau, surtout vendus aux Etats-Unis. Nice Ideas est fondée en 1983, continue à éditer des jeux électroniques principalement orientés vers la simulation, Exportés aux 2/3. En 1985, Steria prend des parts importantes de son capital.
Steria, société de réalisations en infurmatique et automatisme,
oriente sa production dans trois domaines: la simulation, les didacticiels et l'image électronique.
C'est ainsi que, parmi ses réalisations les plus connues, on peut citer : un simulateur de contrôle de ligne a la RATP (SOSIE), des didacticiels de formation d'entreprise utilisant des outils de plus en plus performants (vidéodisque par exemple). Le Ministere de l'intérieur, ElfAquitaine ou l'INSEE ont parmi d'autres, décidé de faire appel à ses services. Mais Steria c'est aussi le système de produits vidéotex VIDEOPAC actuellement cheisi par la BNP, la SNCF, le musée de la Villette... Mais, pensez-vous peut-être, que vont donc faire Nice Ideas et Steria ensemble, leurs domaines 7

aujourd'hui la trajectoire la plus classique. Et bien Steria et Nice Ideas viennent de décider de travailler selon un processus inverse. Pas pour autant plus tranquille, beaucoup en conviendront, mais certainement plus garant d'une haute qualité de produits.

respectifs étant relativement éloignés ? Et bien c'est assez simple, (quoique beaucoup ne veulent jamais entendre parler de ce mode de fonctionnement), ces deux entreprises vont mettre en commun leurs savoirs-faire pour tenter de produire des logiciels de tres haute qualité. Steria va apporter sa connaissance de la simulation, de la vidéo-communication, de l'éducatif et Nice Ideas sa maitrise du jeu électronique pour faire naître des produits strictement ludiques ou à dimension pédagogique supplémentaire.
Aujourd'hui, la stratégie commune est done multiple : avancer dans la qualité des jeux electroniques d'action et de re-flexion et dans leur qualite graphique puis appliquer ces deux
composantes à IEAO, a la vidéocommunication et aux produits peu chers, semiprofessionnels (comme par exemple le premier tableur «Minicale» qui sort actuellement sur MSX). Plusieurs axes au service d'une même idée : faire bénéficier le public le plus large possible de logiciels « multi-médias $»$, alliant qualité vidéo, simulation et intérét pédagogique.
Dans cette optique, Nice Ideas travaille avee le CNDP pour realiser des didacticiels destinés au plan informatique pour tous et concoit ses premiers jeux sur MSX et Thomson. Nous avons testé pour vous les premiers enfants de cette fusion originale, a vous maintenant de vous pronoicer !

Notre rédaction a sélectionné parmi la nombreuse littérature consacrée aux ordinateurs MSX les ouvrages référencés ci-dessous, désormais à votre disposition par correspondance.

Super Jeux MSX P.S.I. (240 p.)
50 programmes de jeux d'adresses, de réflexion et de hasard en Basic. 120 F .
MSX en famille P.S.I. (232 p.)
40 programmes en Basic destinés à gérer une petite famille: finance, pédagogle etc, 120 F ,
Le livre du MSX P.S.I. (206 p.)
Pour tout savolr et comprendre sur le fonctionnement de votre micro. Applications en langages Basic et machines. 110 F .

Basic MSX méthodes pratiques

 P.S.I. (224 p.)Si vous connalssez déja la programmation en Basic et souhaltez l'approfondir. 120 F .
Clefs pour MSX P.S.I. (270 p.)
Un mémento qui permet d'accéder au systéme de base des MSX : brochages el connecteurs, jeu d'instruction du Zllog Z80, adresses ROM et Ram. 150 F .
Basic MSX et MSX-DOS Eyrolles (198 p.) 12.5 F
Ce livre regroupé toutes les instructions du MSX-Basic ainsi que les
commandes du MSX-DOS selon la définition de Microsoft. Il est Illustré par de nombreux programmes et inclut un cours de programmation.
Jeux d'action, de hasard et de réflexion sur MSX. Eyrolles (184 p.)
Des programmes de jeux qui utilisent au maximum les possibilités de I'Interpréteur MSX Basic et les res sources graphiques et sonores du MSX. 110 F
Programmes sur MSX CedicNathan (124 p.)
Vingt programmes Basic largement commentés, pour tirer le meilleur partl des capacités graphiques musicales et de calcul de votre micro (inclus un dictlonnaire Basic). 75 F.

40 programmes pédagogiques en

 Basic MSX Eyrolles (218 p.)Réservé aux parents ou éducateurs qul pensent qu'un ordinateur peut être un outil de choix dans leur démarche pédagogique. 95 F
MSX programmes en langage machine Sybex (102 p.)
Lorsque l'on se heurte à la lenteur du 8 Basic, on vient à la programmation
en langage machine. Toutes les notions de base sont étudlées, avec de nombreux sous-programmes. 78 F. (Vous pouvez aussi vous procurer dans notre librairie, quatre autre
ouvrages des Editions Sybex: Guide du Graphisme, 98 F-Programmation en Assembleur. 98 F . Jeux en Assembleur, 78 F. Routines graphiques en Assembleur, 78 F).

BON DE COMMANDE

A retourner accompagné de votre réglement à : MSX MAGAZINE, 55, avenue JeanJaures, 75019 Paris. Tél. 42.41.81.81.
NOM
ADRESSE

DESIGNATION	NOMBRE	PRIX	
FRAIS DE PORT			
SIgnature obligatoire (SIgnature des parents pour les mineurs)			

Pour etre valable toute réclamation doit nous parvenir sous hultaine à reception de la marchandise. Frals de port : 20 F, Recommande: 40 F (Vente exclusivement par correspondance)

Le MSX prêt à servir!

Abstract

Les ordinateurs familiaux ont la désagréable habitude de se transformer en hydre tentaculaire hérissée d'appendices et de fils divers. Normal : ils sont livrés tout nu et il faut bien leur ajouter, au minimum, magnétocassette et manette de jeu. De là à penser qu'il existait un vide à combler il n'y avait qu'un pas, allègrement franchi par Sony avec son tout nouveau HB-501F !.

Un "look" très "soft"
La mode, en matière de microinformatique, est aux lignes sobres et aux couleurs claires. Sony, avec le 501F, tente manifestement de se démarquer de cette tendance : une belle coque en plastique noir, des formes arrondies. On ajoute une poignée et une paire de hautparleurs et on a un radio-cassette ! En tout cas un aspect très rassurant et sans prétention qui ne devrait pas effaroucher les néophytes. Le 501 F donne vraiment envie de toucher même si l'on y connaît rien ! N'hésitons pas à dire qu'il est beaucoup plus beau que la plupart des machines comparables.

Une trappe à cassette

La grande nouveauté est l'intégration d'un magnétocassette. Cela signifie, pour de nombreux amateurs, la fin de l'angoisse des fils qui se branchent ou se débranchent, des piles usées ou de la mécanique défaillante. Aucun réglage, simplement un clavier, un compteur et un commutateur "monitor" pour écouter ce qui se trouve sur la cassette (sur notre exemplaire le son etait vraiment très faible). Ajoutez une diode témoin. Les possibilites sont sensiblement les mêmes que sur le magnéto-cassette séparé vendu par Sony: il permet la recherche automatique du début d'un programme. C'est extrèmement pratique ! Il n'y a plus qu'à enfourner sa cassette dans la trappe.. Tout fonctionne sans la moindre difficulté.

Un M5X classique

La cassette n'est pas tout. Le 501F est aussi un ordinateur MSX ef, dans ce
domaine, c'est une réalisation extrêmement classique. Pour ce nouveau modèle Sony a abandonné la formule des logiciels en mémoire morte du 75F : à la mise sous tension on obtient donc directement l'affichage d'un MSX classique. Toutefois Sony fournit, avec le 501 F , les logiciels intégrés dans le 75 F sous la forme d'une cassette. Après chargement du programme vous pouvez donc retrouver la "Banque de donnée personnelle" du modèle précédent : gestion de fichier, planning et mémos sont à votre disposition et vous pouvez sauvegarder vos données sur cassette, cartouches RAM ou disquette.
Le clavier est extrêmement similaire à celui du 75 F : il est mécanique et à disposition AZERTY. La nouveauté est la triple gravure des touches qui vous présentent également les caractères obtenus en mode "Graph" et "Shift Graph" c'est pratique si vous employez ces caractêres. Ce clavier émet, à l'usage, un bruit que nous trouvons peu agréable mais cela ne gêne en rien la rapidité de frappe : c'est l'essentiel! Sur la droite on retrouve le pavé de contrôle curseur qui est maintenant agrémenté d'un trou central dans lequel on glisse un manche : il se transforme alors en manette de jeu. Astucieux et très pratique... Nouveauté également très intéressante : une touche "Pause" qui permet d'arrêter momentanément un jeu. Si l'angoisse devient trop forte n'hésitez pas : Il suffit d'appuyer a nouveau sur la touche pour repartir. Fort pratique pour se donner un temps de réflexion ou se relaxer les phal. 9 ses...
Pour le reste le 50ll est un MSX qui
dispose de 64 K de mémoire vive (donc 28 K utilisateur sous Basic) et, naturellement, de 32 K de mémoire morte. L'intérieur est moins banal puisqu'on y découvre un nouveau circuit VLSI spécifique à MSX. La construction a sensiblement évolué depuis la première génération MSX !

Les liaisons possibles

Le HB-501F est doté de deux ports cartouche sur la face supérieure. A l'arrière on découvre une prise Péritel pour la liaison vers le téléviseur ou le moniteur et la prise sortie imprimante normalisée MSX. Sur le côté droit vous pouvez brancher deux manettes de jeu. C'est tout. Par rapport à un MSX classique on constate la disparition de la prise magnétocassette (normal il est intégre) et celle de la sortie son par prise Cinch qui, reconnaissons-le, est bien peu utilisée.
Ce nouveau MSX Sony n'apporte rien de vraiment neuf mais il est complet et constitue un système extrêmement pratique pour "l'utilisateur moyen" : plus de problème de cassette ni de manette de jeu ! Avec l'esthétique et la qualité de construction dont l'a doté Sony il devrait pouvoir séduire...
J.P. Roche

Distribue par Sony France, 19, rue Madame de Sanzillon, 92110 Clichy. TEL, (1) 47.39 .32 .06 .

Principales caractéristiques :

Mémoire vive : 64 K .
Clavier: AZERTY accentué, mécanique.
Mèmoire de masse : magnétocassetle intégré.
Connecteurs cartouche : 2
Liaison écran : prise Péritel.
Soll : prise Peritel
Manettes: 2 prises, 1 integred an pave curseur.
Alimentation: 220 V , intégrece

DISSERT Phase 1 La recherche des idées

Criateur: AP Soft
Distributeur: Canon France
Pric public: 250 F
Format : cussette
Genre : educatif
Configuration : MSX 32 K minimum, magnétocassetle, imprimante en option Interes: 72
Difficulte: 0
Appréciation : ??
L'idée d'utiliser un ordinateur pour apprendre à faire une dissertation, genre littéraire (???) exclusivement réservé à l'usage des potaches (et c'est heureux !!!), peut apparaitre comme fort curieuse. Et nous devons avouer qu'apres analyse du contenu de ce logiciel (écrit en Basic et qui occupe $21,5 \mathrm{~K}$ de mémoire), nous conservons cette opinion. Elle explique que les étoiles de notre tableau d'appréciation aient été remplacées par des points d'interrogation. Pour en terminer sur ce point, précisons que le zéro en note de difficulté veut dire que l'on n'aura absolument aucun problème pour utiliser ce logiciel : tout est expliqué a l l'écran et il suffit de suivre les indications.
MX Dissert, en fait, est composé de trois volets : recherche des idées, construire une dissertation, rédiger une dissertation. Seul le premier volet nous a été fourni au moment où nous rédigeons ces lignes: la recherche des idées. Comme chacun sait (ou devrait savoir), on ne trouve dans un ordinateur que ce l'on y a mis. Inutile donc d'attendre que votre MSX trouve les idées que vous n'avez pas I A partir de là un programme de "recherche des idées" ne peut guère que proposer quelques recettes éculées et constituer un bloc-note effectivement plus pratique qu'un équivalent papier lorsqu'il s'agit de trier ces notes. Nous supposons qu'un tel programme se veut une sorte d'aide à la réflexion, mais ce serait plutôt un garde-fou pour ceux qui ne parviennent pas à conserver la moindre rigueur dans la préparation de leur travail. Mettre en ouvre un ordinateur pour cela nous semble être plutôt du domaine du gadget dont on se lassera assez vite et si l'Enseignement Assisté par Ordinateur (majuscules siouplaî I) se réduit à ce type d'exercice, on peut prévoir que T'engouement des lycéens pour l'ordinateur se tarira assez vite ! MX Dissert
apparaît done comme un moyen d'apprendre la manière très scolaire d'aborder une dissertation si votre professeur vous l'a mal expliquée ou si vous n'avez pas à votre disposition un des nombreux livres qui se proposent de vous l'enseigner. La cible visée est tous les candidats à l'épreuve anticipée de Français du Bac (fin de première), mais le manuel revendique aussi l'aide aux étudiants des DEUG, voire la préparation de conférence et d'articles. Souhaitons que l'utilité éventuelle de MX Dissert s'arrête au baccalauréat, car sì vous en êtes encore à ce niveau après, c'est très inquiétant et nous craignons que tous les ordinateurs du monde ne puissent plus grand-chose pour vous...

MX FONCTION

Crelateur : AP Soft
Distributeur: Canon France
Prix public: 250 F
Format : cassette
Genre : educatif
Configuration : MSX 32 K minimum. magnetocassette, imprimante en option Graphisme:
Intérêt : ...
Difficulté: -
Appreciation: ..

MX Fonction est un programme destiné aux lycéens et étudiants. En fait MX Fonction comporte deux programmes, écrits en Basic, d'environ 10 K chacun. Le premier programme permet le tracé de courbes définies par un équation cartésienne, paramétrée, polaire ou différentielle. Pour vous permettre d'utiliser de nombreux types d'équations, de nouvelles fonctions mathématiques ont été ajoutées à celle qui sont normalement disponibles sous Basic. Le programme vous permet de définir l'intervalle de la fonction étudiée mais aussi le pas utilisé lors du calcul de la courbe ainsi que la fenêtre affïchée à l'écran. Diverses options vous sont offertes : couleurs (du fond et de la courbe), graduation des axes. Un "zoom" vous permet d'étudier plus précisément une portion de votre courbe (sauf pour les équations différentielles). Enfin une fonction de copie d'écran sur imprimante Canon T22A est disponible. Le second programme est plus particulier puisqu'il permet le trace de surface en equation car-
tésienne ou paramétrée. Là encore vous devez définir l'intervalle d'étude, le pas, la couleur, etc. La fenêtre vous permet de définir le point de vue de l'observateur : distance et position par rapport à l'origine des axes (site et azimut). Le tracé peut s'effectuer en simple passage (lignes) ou double passage (quadrillage). Naturellement le temps de calcul
est doublé dans le second cas... Ce programme nous semble une aide tout à fait substantielle à l'étude de ce type d'objets mathématiques. Il s'agit d'un programme trés spécialisé : il ne devrait guère intéresser que ceux qui sont obligés de se pencher sur la question... A moins que les mathématiques ne vous passionnent.

MUSIX

Editeur : Aackosofl

Distributeur: Innelec Conflgurarion : MSX 64 Ko Graphisme : ** D/fficulte : * Format : casselte Intérèt : ..
Appreciation:...
Reçu en dernière minute, ce logiciel n'a pas pris place dans notre dossier. Avec ce programme, comme avec tous ceux en cassette, il faut être décidé pour patienter le temps du chargement. Heureusement la présentation graphique vous occupera un instant en vous présentant une batterie et son batteur, un clavier type piano, une portée et ses quelques notes sans clé, qu'elle soit de sol ou de fa. Au centre, le titre du logiciel inséré dans la fenêtre graphique pour le moment encore vierge.
Tout à coup, oh, suspense ! le Boléro de Ravel se charge. Après quelques longues minutes, l'arrangement à trois voix commence sur une introduction de batterie. Observez bien le charmant minois du batteur qui tout-à-coup s'illumine hilare, et se défonce sur sa grosse caisse claire et sa cymbale. Quant au Boléro lui même, l'arrangement n'a rien d'exceptionnel, mais il est vrai qu'entre un orchestre de soixante musiciens et un petit générateur à trois sons, la différence s'affirme sensiblement.
Toutefoís ne désespérez pas, car les touches du curseurs vont vous permettre d'entrer dans l'ère de l'interactivite. Les flèches gauche et droite jouent sur
le volume, tandis que celles du haut et bas modifient le tempo. La fenêtre graphique tout à l'heure désespérement vide, s'est désormais emplie de rectangles colorés, défilant de bas en haut coincidant aux notes du clavier sus-dessiné. Si la note est courte il n'y aura qu'un simple trait, et vous l'avez deviné, si la note est longue le rectangle s'allongera. En même temps les notes sont affichées sur la portée, et seul le clavier reste statique.
A partir de cela vous pouvez éditer la partition du Boléro en ajoutant ou en supprimant certaines notes, ou alors vous lancer véritablement dans la composition à partir d'une mémoire vide (après avoir effacé le Boléro). Le programme contient en outre dix rythmes en mémoires allant de la valse au Funk en passant par le swing, mais rien ne vous empéche de composer vos propres rythmes.
La méthode d'entrée des notes ne réclame pas de connaissances en solfège. Il suffit de se repérer grâce à une petite main sur le clavier dessiné. La durée des notes n 'est pas évidente à programmer puisqu'il faut régler la hauteur du rectangle qi défile dans la fenêtre. Un logiciel relativement simple, aux graphismes bons et qui permet sans prétention de programmer des airs simples. Sur le plan du son ce n'est pas le synthé Yamaha. C'est un logiciel amusant mais qui ne concerne pas le musicien maniaque de son solfége qu'il a eu tant de mal à apprendre. (Sauvegardes sur disquettes ou cassettes.)

Spectravidéo 738 X'press

Un portable MSX

Les ordinateurs MSX se diversifient. Alors que les premiers modèles se distinguaient surtout par l'esthétique et la capacité mémoire, l'offre couvre - ou va couvrir - aujourd'hui des besoins fort divers. Le X'press de Spectravidéo est probablement le MSX le plus original de cette nouvelle génération. Il est à la fois portable et de conception professionnelle ! En fait, par bien des côtés, il rappelle un modèle très connu et apprécié : L'Apple IIc.

Présentation : tout est dans le sac!

Le X'press est livré dans un élégant sac de voyage qui contient l'unité centrale, l'alimentation, les câbles et peut même accepter divers accessoires tels que disquettes ou documentation. Le tout est d'un encombrement et d'un poids fort réduits si bien que le transport ne pose aucun problème même si l'on marche à pied ! il sera done passible d'emmener son X'press partout avec soi sans la moindre difficulté.
L'unité centrale est réalisée en plastique creme, la robustesse semblant supéricure a celle des autres MSX ; c'est bien normal puisqu'un portable est, par nature, plus exposé qu'un modele sedentaire. Leb dimensions somt semsiblement identiques à celles d'un MSX
classique avec, toutefois, une largeur plus faible et une profondeur un peu plus importante que la moyenne.
Contrairement à la plupart des unités centrales MSX le X'press est pourvu d'une alimentation externe : plus exactement d'un transformateur qui n'a pu prendre place dans l'appareil. Ce choix s'explique par le nombre d'elements contenus dans l'unité centrale comme nous le verrons plus loin. La même solution a été adoptée par Apple sur son IIc... A l'arrière les prises de connexion et diverses interfaces sont protegees par une sorte de béquille en plastique qui sert également de support pour incliner légèrement l'unité centrale lorsqu'on I'utilise. Cette position facilite la manipulation et les branchements et elle favorise egalement le refroidissement des circuits internes en dégageant les ouvertures qui se trourent sous l'appareil. On évite ainsil l'utilisation de pieds towiours encombrants pour le transpott de la machine.

Conception générale

LeX'pressest un mikro-ordinateur portable mais non autonome. 11 faut donc liui procurer une prise secteut ef un ecran (maniteur ou televiseur) pour l'urtiliser. Toutefors les autres elements indispensables a l'explailation a secrevere in d'um
micro-ordinateur sont intégrés. En particulier une unité de disquette 3,5 pouces et une interface RS-232C (sans compter les autres éléments habituels d'un MSX). Il s'agit donc d'un petit système informatique complet que l'on pourra transporter sans aucune difficulté puisque tout est intégré : fini les câbles, les connecteurs multiples et les éléments à assembler soigneusement sur tout systeme traditionnel.

Le choix d'une disquette 3,5 pouces est ideal pour une machine portable. L'encombrement est moindre et, surtout, ce type de disquette est beaucoup moins fragile que les $5^{\prime \prime} 1 / 4$. Spectravidéo a choisi la formule du simple face qui vous offre environ 360 K disponibles - c'est-à-dire formatés - par disquette. L'éjection est assurée par une touche mécanique et un voyant, à côté du pavé curseur, vous indique si la disquette est en cours de fonctionnement. Du côté de la mémoire pas de surprise : le X'press est équipé de 64 K de mémoire vive et de 16 K de mémoire vidéo (VRAM). Sur ce plan il est parfaitement conforme au standard MSX habituel. Sous Basic la mémoire vive disponible est de $24,4 \mathrm{~K}$ et non de 28 K en raison de la présence du Disk BASIC.

Le clavier et l'écran

Notre exemplaire du X'press était un prototype. Le clavier avait toutefois été modifié et il présentait la disposition

AZERTY qui sera celle adoptée en France (des modèles QWERTY seront vraisemblablement disponibles pour ceux qui préférent ce type de clavier). La disposition des touches spéciales (hors alphanumériques) est assez différente de celle d'un MSX traditionnel mais on retrouve les mêmes. Toutes les touches sont regroupées pour former un seul clavier : c'est un choix tout-à-fait normal puisque l'espace est mesuré sur un portable. De même les touches de contrôle curseur ont une disposition assez particulière et sont accollées au clavier. Dans l'ensemble la disposition adoptée est pratique. Elle est même en partie améliorée par rapport à un MSX traditionnel ; plus faite pour l'usage professionnel (déplacement de «Caps Lock 》 dans une position plus classique par exemple). Au niveau du toucher ce clavier a été diversement apprécié. Il est certain que sa mécanique n'est pas aussi bonne que celle de certains claviers professionnels (toucher un peu flou et trop ferme, déplacement des touches un peu faible et non linéaire) mais un peu d'habitude nous semble pouvoir faire oublier assez rapidement la chose. En tout cas une frappe rapide est possible sans aucun problème.
La liaison écran peut se faire suivant deux modes : RVB donc, pour nous, prise Péritel et vidéo composite (prise Cinch) ce qui permet l'utilisation sans problème d'un moniteur monochrome. Cette dernière possibilité est indispensable pour les usages professionnels (traitement de texte par exemple). Sur notre exemplaire la liaison Péritel était dépourvue de la tension 12 V nécessaire à la commutation du téléviseur. Il est vraisemblable que les machines de série en disposeront. De plus de nombreux téléviseurs sont aujourd'hui équipés d'une commutation «Audiovisuel » qui permet de commuter l'entrée Péritel sans faire appel à une tension externe. Une des nouveautés les plus intéressantes du X'press (en dehors de I'intégration et de la portabilité) tient à l'utilisation du processeur vidéo Yamaha V-9938 développé pour MSX2. Ce circuit est prévu pour fournir directement des sorties R VB ce qui explique la facilité d'adaptation Péritel mais il permet aussi l'exploitation du mode 80 colonnes. En l'état actuel des choses les 80 colonnes ne sont pas accessibles sous Basic MSX (qui en reste, dans le X'press à la version 1.0). Nous le regrettons naturellement. On peut toutefois penser que des routines permettant I'utilisation des possibilités du 9938 verront le jour. Le mode 80 colonnes sera toutefois utilisé par des logiciels utilitaires qui ne manqueront pas d'apparaître ou de faire l'objet dune adaptation. L'hypothèque la plus gênante à une uti-
lisation semi-professionnelle d'un ordinateur MSX se trouve ainsi levée. Une routine sous MSX-DOS est fournie pour passer en mode 80 colonnes sous ce système d'exploitation.

Prises et interfaces

le X'press est doté de tous les éléments habituels d'un ordinateur MSX. On retrouve donc un logement pour cartouche, deux prises pour manettes de jeu, une prise pour magnétocassette, une sortie imprimante, une sortie son. Toutes ces prises sont parfaitement conformes au standard MSX et aucune difficulté n'est à prévoir pour utiliser les accessoires et périphériques des MSX classiques.
A ces éléments bien connus s'ajoutent une prise pour unité disquette externe (pour une utilisation intensive deux unités de disquettes sont pratiquement indispensables) et une interface RS232C. Cette interface, très universelle, vous permettra des liaisons avec un autre ordinateur, I'utilisation d'imprimantes série ou, plus probablement, celle d'un modem (accès aux banques de données, communications, etc...). C'est l'ouverture sur tout un mode qui manque aux autres machines MSX. La prise utilisée est du type DB9, comme sur le Macintosh ou sur des manettes de jeu (mais il s'agit d'une prise mâle).

Utilisation et essais

Comme préambule signalons que la documentation de l'importateur sur le X'press a «disparu» durant le dernier Sicob et qu'en conséquence nos investigations se sont trouvées limitées. Comme le souligne son constructeur le X'press constitue plusieurs ordinateurs en une seule machine. Tout d'abord c'est un MSX classique équipé de 64 K de mémoire. Il peut sans aucun problème utiliser les programmes sur cartouche ou sur cassette développés pour les diverses machines connues. C'est du moins ce que semble montrer nos essais : tous les logiciels que nous avons essayés ont fonctionné exactement comme sur une machine classique. C'est, ensuite, une machine qui peut fonctionner sous MSX-DOS avec son unité de disquette. II faut malheureuement regretter que, pour l'instant, les logiciels disponibles soient en nombre vraiment très limité! Nous avons pu faire «tourner» sans probleme l'unité logicielle sur disquette dont nous disposions au moment de l'essai. Bien entendu, comme tous les ordinateurs MSX équipés d'une unité disquette, le X -press peut ègalement fonctionner sous Disk BASIC (version 1.0) : cela vous permet de profiter de votre unité

6\% 06

 표

$000-1$

de disquette lorsque vous travaillez sous Basic.
En plus de ces utilisations finalement assez classiques, le X'press est livré avec une disquette CP / M. La version exacte, d'après le message de copyright est «CP/M 80 Revision 2.28 for X'PRESS (release 1.1) 》. Divers utilitaires sont fournis mais l'absence de documentation et un temps fort limité (l'exemplaire essayé est, pour l'instant, l'unique Xpress français) ne nous ont pas permis d'en explorer toutes les ressources. Toutefois SEREPE, son importateur, prévoit naturellement de proposer pour le X'press de grands logiciels sous CP/M comme Wordstar. C'est là une ouverture très nette vers le monde professionnel qui pourrait fournir au X-press et au standard MSX en général une «carte d'entrée» très intéressante dans un monde jusqu'à présent peu enclin à la considération à son égard.
Nous ne pouvons guère vous parler de la documentation fournie puisqu'elle n'était pas disponible au moment de notre essai. Aux dires de l'importateur elle comprendrait la documentation "classique» d'un MSX, plus naturellement, des informations sur le Disk BASIC, MSX-DOS, CP/M et celles qui sont indispensables à l'exploitation de l'interface RS232C.

Conclusion

Avec le X'press, Spectravidéo propose un micro-ordinateur qui peut intéresser de nombreux publics ou plutôt combiner plusieurs usages. Il peut être un micro-ordinateur familial classique (jeu, initiation à la l'informatique, éducation) mais il peut aussi être utilisé de façon beaucoup plus sérieuse et constituer la base d'un petit systeme professionnel. Le fait d'intégrer tous les éléments nécessaires à ces deux types d'utilisation sous une forme très facilement transportable lui permet de passer sans difficulté du bureau à la maison pour les soirées ou les week-ends et inversement. Apple a lancé son modele IIc avec un concept de cet ordre et cela ne lui a pas si mal réussi... Bien entendu le X'press ne
bénéficie pas de la même bibliothèque de programmes - et c'est pour l'instant son point faible - mais, par certains côtés, il peut apparaître comme plus moderne que son prédécesseur. Spectravidéo dispose avec cette machine d'une excellente carte : de nombreux utilisateurs potentiels rêvent d'une machine qui puisse servir à la fois à leur famille et pour leurs activités professionnelles. Le X'press est une des très rares réali-
sations qui puissent prétendre remplir correctement ces deux tâches pour un prix encore abordable.

J.-P. Roche

Distribué par: SEREPE, 103-115, rue C.-Michel. ZAC. 93200 Saint-Denis. Tél. : (1) 42.43.36.22.
Prix : environ 5990 F,
avec moniteur monochrome : 6990 F , avec moniteur couleurs : 8500 F

Principales caractéristiques en standard

Microprocesseur : Z80A (processeur graphique 256×192 points, 80 colonnes vidéo V-9938). sous MSX-DOS et CP/M.
Système d'exploitation: MSX-DOS, Couleurs : 16.
CP/M 2.2.
Mémoire vive : $64 \mathrm{~K}+16 \mathrm{~K}$ vidéo. Clavier: AZERTY mécanique, touches Mémoire morte : $32 \mathrm{~K}+16 \mathrm{~K}$ disk de fonction.
Basic.
Mémoire de masse : disquette 3,5 pouces 360 K , prise lecteur externe, prise magnétocassette.
Langage: MSX Basic 1.0,
Disk Basic 1.0.
Ecran : liaison RVB
Péritel et vidéo
composite, 24
lignes de 40
colonnes,

Interfaces: connecteur cartouche, 2 manettes de jeu, imprimante parallèle, RS232C.
Alimentation : 220 V , transformateur externe.

STAR ST80

Une belle imprimante thermique

Abstract

Star est un constructeur d'imprimantes connu pour présenter des produits dotés d'un bon rapport qualité/prix. Une imprimante MSX est maintenant disponible dans sa très large gamme : elle utilise un procédé d'impression thermique ê offre 80 colonnes.

Premier contact

La Star ST-80 est un modèle compact, comme la plupart des imprimantes thermique. Contrairement à l'habitude elle est plus large que profonde. Sa carrosserie est réalisée en plastique noir avec un bel aspect. L'ensemble est esthétiquement réussi et bien adapté à la plupart des ordinateurs MSX. En principe cette imprimante est livrée avec cordon de liaison vers l'ordinateur MSX et un rouleau de papier thermique. Elle est donc immédiatement utilisable au sortir de son carton.
Les commandes sont peu nombreuses mise sous tension, bouton de commande du rouleau d'impression (comme sur une machine à écrire) et deux touches électriques. La première permet de faire avancer le papier ligne par ligne (« Line Feed »), la seconde commande la mise en ligne de l'imprimante (commande par l'ordinateur ou commande locale). Deux voyants indiquent la mise sous tension et la mise en ligne. A l'arrière le connecteur de liaison est un modèle standard (connecteur dit Centronics). Un mode d'emploi très complet est livré avec l'imprimante. Il sera probablement
très apprécié des «spécialistes» de la micro-informatique car il contient toutes - ou presque - les informations techniques nécessaires, mais par contre il pourra dérouter l'amateur débutant en raison justement de sa technicité. Pour un produit très grand public comme MSX (qui a été choisi par de nombreux néophytes) on aurait pu souhaiter une partie d'abord plus immédiat.

La mécanique

La ST- 80 utilise un procédé d'impression thermique et ne fonctionne qu'avec du papier thermique. Cette formule permet une grande simplification de la mécanique. Le papier utilisé se présente sous la forme d'un rouleau et prend place dans le corps de l'imprimante. L'entrainement se fait par friction. Les avantages d'une telle conception sont la simplicité et la compacité et on peut ajouter : le prix peu élevé. Les inconvénients sont essentiellement ceux qui sont liés à l'emploi d'un papier spécial : il est assez cher et n'est pas divisé en feuillets standards. Par corl4e on dispose toutefois d'une impression sur 80 colonnes
et la vitesse de travail de cette imprimante est élevée. Sa vitesse d'impression de base est de 60 cps (caractères par seconde) et elle travaille en mode bidirectionnel optimisé. Cela veut dire que la tête d'impression fonctionne à l'aller et au retour et qu'un programme spécial essaie d'éviter les déplacements inutiles. Dernier avantage de l'impression thermique : tout se passe en silence ! Pour certains usages ce n'est pas négligeable.
Le "soft"

Un certain nombre d'options pour le fonctionnement de l'imprimante sont sélectionnées grâce à une batterie de micro-interrupteurs situés sous le rouleau de papier. Ils sont accessibles sans aucun démontage et sans retirer le papier du mécanisme d'impression ce qui nous semble être un point intéressant ! Ces six interrupteurs vous permettent de choisir entre O et 0 pour le zéro, le changement de ligne ou non après un retour chariot, le contrôle du tampon et, pour les trois derniers, la sélection des jeux de caractères. Ces jeux sont au nombre de quatre: le jeu de caractères MSX international, le jeu de caractères MSX japonais et deux jeux non-MSX : PC japonais Katagana et PC japonais Hiragana. Il est possible de tester directement l'imprimante et son jeu de caractères en appuyant sur la touche «LF» lors de la mise sous tension : les caractères 32 à 255 s'impriment à l'infini. Bien que le mode d'emploi et son jeu de caractères n'en parlent pas il est possible d'obtenir les caractères graphiques MSX des codes 1 à 31 par la séquence «LPRINT CHRS(1);CHRS(I + 64) » où I est le code du caractère que l'on veut imprimer. On regrette que cette information ne figure nulle part (ni d'ailleurs dans la plupart des manuels livrés avec les ordinateurs MSX...). Bien entendu ces jeux de caractères étant conformes au code ASCII pour les codes 32 à 127 vous pouvez utiliser votre ST-80 comme imprimante ASCII universelle. Le dessin des caractères se trouve en matrice $9 \times 9(8 \times 6$ pour les caracterres semigraphiques). Ce type de matrice permet les jambages descendants donc une très bonne lisibilité.
Les possibilités d'impression de la ST-80 sont assez étendues. Vous disposez des caractères élargis (40 caractères par ligne), des caractères gras, du soulignage et, plus rare, des indices et des exposants. Par contre il n'existe pas de mode condensé : 80 caractères par ligne constituent un maximum. Naturellement il est possible d'imprimer en mode graphique avec deux densités : 480 points par
ligne et 960 points par ligne (double densité).
Les possibilités de contrôle de l'imprimante sont assez étendues : on dispose d'un interligne programmable ($1 / 6^{c}$, $1 / 8^{\text {e }}$ de pouce ou par $1 / 132^{\text {e }}$ de pouce), d'une tabulation verticale et horizontale, du retour en arrière sur un caractère, de l'avance d'un nombre donné de caractères, du saut de caractères, de l'impression répétitive d'un caractère ou de points graphiques (fort utile...) et du saut de page (non programmable mais n'oublions pas que l'on emploie du papier en rouleau !). On regrette que le mode d'emploi ne donne pas d'exemple d'utilisation de toutes ces possibilités. Par contre l'utilisation en mode graphique y est développée.

Terminons avec une dernière possibilité, très originale : l'impression, en parallèle avec l'impression normale, de tous les caractères (y compris les caractères de contrôle) en hexadécimal. Cela devrait être très utile pour la recherche de défauts de programmation ou d'impression.

Utilisation et essais

Pourvu que votre imprimante vous soit livrée avec ses micro-interrupteurs correctement positionnés, sa mise en service ne posera aucun problème. On est surpris agréablement par la rapidité et le silence de l'impression. Le résultat garde un aspect «informatique» (la ST-80 ne dispose pas de la qualité courrier) mais l'impression est très nette avec un excellent contraste. Une telle qualité est rare à ce prix ! Bien entendu le revers de la médaille est l'obligation d'utiliser du papier thermique en rouleau... Si l'on admet ce point nous devons dire
que nous n'avons guère tiré que des satisfactions de l'emploi de la ST-80 !

Conclusions

La Star ST-80 est une très bonne imprimante avec des possibilités étendues pour sa catégorie et son prix. L'utilisation de papier thermique en rouleau n'en fait pas un modèle pour utilisation intensive car ce papier est relativement cher et n'offre pas toutes les facilités d'un papier normal. Cette imprimante devrait donc s'adresser essentiellement aux amateurs qui n'ont pas une production imprimée très importante. En contrepartie de ses limitations elle leur apportera une qualité et une rapidité d'impression que les modèles à impact n'offrent guère à ce prix... En prime, un silence toujours agreable !

J.-P. Roche

Distribue par: Hens 15 9s 106 , rue Blasse Puscal BP 71.93602 Aulany sous-Bois Ceder- Fel 48.66.22.90.

Le MSX en France,

 c'est lui !

Les ordinateurs répondant à la norme MSX se sont implantés en France avec quelques difficultés, comme dans le monde entier, malgré les qualités évidentes des machines. Est-ce parce qu'elles sont apparues à un moment charnière dans le domaine de la micro-informatique domestique ? Il est en tout cas certain que ces machines sont faites pour durer. D'où peut-être un succès difficile sur un marché où la mode éphémère d'un produit est mieux acceptée qu'une idée de longévité. D'aucuns accusent les journalistes d'avoir donné une fausse image des ordinateurs MSX, d'autres voient dans les importateurs et les distributeurs les vrais fautifs. Dans cette mélée verbale, trop ressemblante au scénario d'un "Don Camillo ", un homme s'est battu pour faire connaître ce matériel. Il fut véritablement le premier à y croire, créant une association six mois avant l'introduction du premier MSX en France : le groupe des utilisateurs du MSX. Egalement PDG de la société V.L.S.I., il était le seul représentant français présent parmi les éditeurs internationaux, lors de la semaine du "MSX Software Exchange ", qui se tenait pendant le PCW Show de Londres en septembre dernier.

MSX magazine : Quand est né le "groupe MSX ", et qu'offre-t-il aux adhérents ?
Daniel Ravez: j'ai créé le groupe en
avril 1984, soit six mois avant I'apparition de la premièrfgnachine en France. C'était le Spectravidéo 328, qui nous avait été présenté comme un MSX, ce
qui n'était pas tout-à-fait le cas. Nous comptons actuellement plus de deux cents membres. Nous assistons les utilisateurs qui peuvent recevoir des conseils techniques ou informatifs, ceci grâce à une permanence téléphonique. Les membres peuvent également essayer sur place des matériels et des logiciels, compulser des ouvrages. Nous éditons aussi un bulletin contenant des articles et des programmes.
M.M. : Si vous avez fondé le groupe six mois avant qu'un ordinateur MSX ne soit sur le marché, vous aviez déjà une bonne idée du produit. Sur quels critères vous êtes-vous basé ?
D.R. : J'ai débuté l'informatique comme beaucoup de jeunes en jouant sur les calculateurs que mon père possédait. Puis j'ai utilisé différentes machines, comme le Yéno ou l'Atari, à titre personnel pendant mes loisirs, car je travaillais comme analyste programmeur. A l'annonce du lancement du MSX, j'ai constaté qu'une vingtaine de compagnies soutenaient le projet. C'était la première fois que des firmes de cette importance se réunissaient autour d'une norme commune, afin de réaliser des produits parfaitement compatibles entre eux. D'autre part, elles avaient toutes une très grande expérience dans le domaine de l'électronique "grand public». C'était un gage de sérieux. Un autre élément positif concernait la puissance de ces firmes, elles comptaient parmi les plus grandes du monde. Il faut imaginer que l'ensemble des moyens financiers, des personnels, des centres de recherches est largement supérieur à ceux d'une compagnie comme IBM. De plus, les Japonais travaillent à long terme. Ils soutiennent le MSX pour qu'il dure. Ce qui n'est pas le cas d'autres materiels, je pense en particulier à des marques anglaises, qui au sommet du succès ont disparues. Ceci parce que les consommateurs en avaient assez de voir sortir des nouveaux modèles, sans pourvoir utiliser les logiciels ou périphériques achetés avec le précédent.
M.M. : Malheureusement, on est obligé de constater que les ordinateurs répondant a la norme MSX n'ont pas le succès que l'on était en droit d'attendre. L'une des critiques le plus souvent exprimée est le coût élevé du matériel. Qu'en pensez-vous ?
D.R. : D'abord, le succès et la vie d'un matériel passe en grande partie, outre bien entendu ses qualités propres, par l'éventail des logiciels proposés. Plus on

102 programmes pour MSX

Jacques Deconchat fait ici rééditer la énième version de son "102 programmes de jeux pour"
néophyte, le niveau 2 un peu plus compliqué et ainsi de suite.

Chaque jeu, facile ou compliqué, est présenté de la même manière. Deux premiers paragraphes vous expliquent de quoi il s'agit (difficulté de programmation, du jeu). Ensuite, très vite, vous passez aux choses sérieuses: Les lignes les plus importantes son expliquées ; on vous dit comment réussir à jouer - merci - et on vous ouvre des perspectives nouvelles avec les extensions possibles du programme. C'est une formule pour
apprendre à programmer maintenant très répandue, que beaucoup d'amateurs adoptent avec raison.

Un bon point ; les programmes sont à chaque fois courts et bien organisés, ce qui évite une frappe interminable fastidieuse et les erreurs inévitables. Par contre, mauvais point : I'arididité des commentaires qui sont dans les explications de structure des programmes, franchement insuffisants. Globalement, un livre correct pour tous ceux qui ont déjà certaines notions de Basic et qui veulent les perfectionner.
P.S.I. BP 86, 77402 Lagny / Marne Cedex.

JEUX d'action, de hasard et de réflexion

sur MSX

JEUX

d'action, de hasard et de reflexion sur TRSII

Trop peu d'éditeurs, de livres ou de logiciels, se sont attachés à travailler en profondeur les pos-
optimale des micros de la "grande famille", Olivier Picard et Marc Ducamp poursuivent deux buts : offrir des jeux intéressants (sortant des sentiers un peu trop battus) et enseigner en même temps une programmation rendant plus attractive et plus performante la machine. Sincèrement, ils parviennent à tenir leur pari. Les jeux sont effectivement de bons jeux, tant pour l'action (imaginez-vous pauvre poulet égaré, obligé de traverser une autoroute en folie pour rejoindre votre basse-cour d'adoption et vous aurez Crazy Motorway) et le hasard que pour la réflexion (jouez au Master Mind, au poker américain ou
exercez votre mémoire visuelle). Quant au côté didactique du livre, il est très visible : chaque jeu est expliqué, des variantes sont proposées (notons un niveau junior réservé... aux enfants... ou aux autres !), et enfin la structure du programme est commentée. C'est très bien. Mais juste une appréciation négative : cela aurait pu être encore plus détaillé. L'apprenti programmeur restera probablement souvent sur sa faim de connaissances nouvelles.
Mais l'appétit lui sera venu, ça ne fait aucun doute!

Eyrolles, 61, bd St Germain, 75005 Paris.

Applications familiales en Basic MSX

Le titre de cet ouvrage vous donne certainement beaucoup d'indications sur ce que vous allez trouver à l'intérieur : des programmes Basic pour micros au standard MSX concernant, soi-disant, toute la famille. C'est là le genre de programmes que je trouve quand même le plus souvent inutiles et ennuyeux. Aussi, je ne m'étendrai pas dessus : simplement si vous souhaitez gérer votte compte bancaire
ou calculer vos impôts avec votre MSX il vous faut ce livre ! Mais permettez-moi de penser que l'intérêt du travail de Luc LY est plutôt ailleurs. En fait, il fait ici un véritable cours de programmation en Basic avec exposé des besoins - sorte de petit cahier des charges - Suivent le détail des sous-programmes, les organigrammes correspondants et les explications necescaires à la compréhension de la structure des listages.
Peu d'ouvrages destines au grand public sont autant soucieux de faire participer les lecteurs a tout le cheminement de
la programmation. Celui-là est donc à retenir, lorsque l'on est un "débutant éclaire" et que I'on souhaite comprendre plus à fond l'entier des processus qui font qu'un ordinateur est par exemple capable d'effectuer un tri.
Signalons enfin qu'en annexe vous sont offertes les spícifications générales du MSX, les instructions Basic et un tableau des codes ASCII.

Edimicro, $121 / 127$ aventure d'hatie. 75013 Puris.

Suitle de la pase 3 que à 740 F , qui comme Eddy II dispose d'icônes pour la sélection des fonctions
Par contre nous n'avons pas eu la chance de voir le CX7M/128, ordinateur musical, version MSX2. Sa présentation pour l'Europe se fera au Salon de la musique de Frankfort en février (86). Quand à sa sortie et à son prix, Mme Soleil n'en sait sûrement guère plus que nous. Nous aurons probablement une chance de voir pour la fin de l'année les logiciels, la souris et I'imprimante.
En un autre lieu que le salon de la musique nous avons pu découvrir le nouveau synthétiseur SFG 05 qui équipera le CX 7 M , mais qui peut aussi se monter sur tous les MSX actuels (avec le câble d'adaptation à 490 F). Il est équipé de l'interface Midi, mais cette fois elle fonctionne dans les deux sens en entrée comme en sortie, ce qui permet si l'on a un clavier électronique ou un orgue disposant

Sony MSX2

En avant première, les Parisiens et banlieusards vont pouvoir admirer la nouvelle "bête" de chez Sony. Le MSX 2 arrive chez Vidéoshop dès le début décembre. Allez le voir! Dans le prochain numéro de notre revue il sera testé, pour le moment, tout ce que nous pouvons dire est que nous l'avons vu au Sicob et que la haute résolution, c'est vraiment quelque chose de surprenant et de beau !
Vidéoshop, 50, rue de Richelieu, 75001 Paris et 251 bd,
Raspail, 75014 Paris.
de l'interface Midi, de l'y connecter. Comme pour le SFG 01 ou le SFK 01, on peut y adjoindre les claviers YK 01 et YK 20 (ce dernier remplace le YK 10), et on dispose de deux sorties audio en stéréo. Au niveau du synthétiseur, plus de paramètres dont le Delay LFO, la PEG (pitch enveloppe generator). Le logiciel a lui aussi évolué et permet de jouer 4 sons différents sur 8 notes en même temps. On peut sélectionner les canaux Midi de 1 à 16 pour chaque son, et on retrouve la petite boite à rythmes avec accompagnements automatiques. Les sons usines quand à eux n'ont pas changé. Si ce nouveau synthétiseur sort avant le CX7M (certains revendeurs d'instruments de musique l'annoncent déjà) on devrait aussi trouver un nouveau logiciel de registration, et un nouveau Music Macro, qui lui sont destinés. Le prix encore inconnu devrait se situer entre 1500 et 2000 F . Donc si vous ne vous êtes pas encore décidé à équiper votre MSX d'un synthétiseur Yamaha, attendez celui-ci qui apporte quelques mieux non négligeables.

Nouveaux logiciels

YRM 301 Midi séquencer, 510 F , cartouche.
YRM 302 RX editor, 510 F , cartouche.
GAR 01, programme de composition graphique, 740 F , cartouche.
CMW31, apprentissage accords sur clavier, cartouche.
CMW32, progression d'accords sur clavier, cassette (nécessite le logiciel Musique macro).
CMW33, apprentissage accords sur guitare, cartouche (ces 3 derniers entre 500 et 600 F).

Patrick Boujet

Adeptes de musique : attention!

Deux "petites choses" qui risquent d'attirer beaucoup de musiciens amateurs ou confirmés, sur MSX
L'Unit Connector UCN 01 est le connecteur que beaucoup attendaient et qui permet à tous les MSX de bénéficier des qualités du Yamaha : obtenir le son par
synthétiseur et avec clavier, par exemple.
Disponible chez Lutec, 58, rue de Rome, 75008 Paris.
Un séquenceur en temps réel, logiciel destiné aux micros Yamaha qui permet de jouer sur huit pistes, ou grâce à un exten deur sur seize pistes. Chaque piste pouvant être enregistrée séparement.
Celui-là se trouve chez Penny Lane, importateur et distributeur, 44, rue des Bois, 75019 Paris. Tell. 16.42.05.31.49.

Un MSX 2 à prix défiant toute concurrence

La société Print Light annonce en avant première, la distribution du micro-ordinateur LASER MSX 2 au prix compétitif - et étonnant tout à la fois
de 3.150 F ! La nouvelle machine va être distribuée avant les fêtes de Noël, probablement dès le début décembre.
C'est un MSX 2 ordinaire avec une haute résolution de $512 \times$ 212 points et de 512×414 points. Il offre la possibilité de faire de l'incrustation vidéo et bientôt de réaliser la digitalisa-
tion des images. II a 128 K de RAM et 128 K de VRAM et possède en plus un disque virtuel. Une horloge en temps réel sauvegarde la date, I'heure et les paramètres de configuration de l'écran. Il permet aussi de recentrer chaque logiciel sur le moniteur.
A tous points de vue c'est un micro qui risque d'attirer les foules.
Print Light, 24, rue de Stalingrad, 93310 Le Pré SaintGervais.
rit́s logicicts

Vifi-Nathan

Microprocesseur : c'est un logiciel qualifié de formateur qui tente de répondre à toutes les questions que l'on se pose lorsque l'on devient propriétaire d'un micro-ordinateur. Microprocesseur vous fait comprendre comment fonctionne un... micro-processeur et vous initie

aux principes du langage machine.
Katuvu est un jeu éducatif destiné aux enfants d'écoles primaire. Il propose une succession de scenes différentes quant au décor et aux eléments qui s'y trouvent plongés. L'enfant doit ensuite retrouver dans quelle scène il a vu tel ou tel objet.
Color Pack s'adresse aux plus de six ans. C'est un jeu de coloriage qui aide l'enfant à dessiner tout en lui permettant les mélanges qu'il veut. Il se compose de trois jeux axés sur le développement de la mémoire et du sens logique.
Coq'inn transforme les enfants (âgées de plus de douze ans selon le mode d'emploi) en coq règnant sur son poulailler. Mais pas n'importe quel coq, un "vrai" : celui qui garde le poulailler contre toutes attaques et qui rend le plus souvent possible visite à sa poule préféréc !
Tous ces logiciels sont des a present disponibles chez tous les distributears de vifl-Nathan.

Infogrames

FBI : vous vous retrouverez à l'époque de la prohibition et il vous faudra, au péril de votre vie (cela va de soi), récupérer des chargements de whisky. Tout

SONY HTBT

cela avec le FBI aux trousses, sinon çe ne serait pas rigolo. Et puis, et surtout, TEX le traitement de texte à fenêtres. Il était annoncé - comme celui de Canon - depuis longtemps, et avait été retardé plusieurs fois. N'en soyons pas désolés au contraire, puisque TEX promet d'être parmi les traitements de texte les plus intéressants (oui, oui, nous pouvons le dire !) proposés à la micro-informatique familiale.
Le seul inconvénient qui nous lui voyons est qu'il ne permet de visualiser que 40 colonnes à la fois, ce qui provoque un défilement à l'écran lorsque la ligne dépasse les 40 caractères. Tex permet d'éditer des textes de 80 caractères par lignes).
Infogrames, 79, rue Hippolyre Kahn, 69100 Villeurbanne.

MX TEXT : le traitement de texte selon Canon

AP Cantin Vag USx

MSX

On l'attendait. Dans la série des logiciels utilitaires de Canon, un traitement de texte était promis depuis le Sicob. Ça y est il est disponible et très prometteur. Il demande dêtre utilisé avec un MSX d'au moins 32 K et permet d'effectuer de nombreuses fonctions d'édition, de mise en page et d'impression.
Pour commencer la frappe se fait au kilomètre. Léditeur est plein écran, ce qui autorise des déplace-
ments rapides dans le texte.
Quatre modes de justification sont possibles, suivant I'utilisation que vous voulez faire de votre texte et vous pouvez également créer un entête ou un pied de page. Le nombre de caractères par ligne et de lignes par page est définissable, de même que les codes de contrôle et les adaptations nécessaires à une imprimante. Vous indiquez aussi la taille et le type du papier que vous utilisez. La sauvegarde peut se faire
sur cassette comme sur disquette, ce qui permet de pouvoir fusionner des textes plus aisément. Dernier gros avantage de MX Text : il déroule ses menus et vous offre des fenêtres. Linteractivité avec votre micro s'en trouve forcément renforcée.
MX Text est cer tainement un trés bon traitement de texte, nous le testerons dans notre prochain numéro en attendant allez donc le voir cher votre distributeur !

Distribution: ça bouge!

Du mouvement dans le monde de la distribution déjà bien compliqué (surtout pour les concep-
teurs...) : Vifi-Nathan reprend la distribution de Aackosoft et Inneles celle de Core.

Première campagne de promotion du MSX

Un an après l'introduction du MSX en France, la première action commune des constructeurs voit le jour.
Les sociétés les plus dynamiques se sont associées à une campagne de promotion du standard. Constatant que le grand public n'était pas encore suffisamment informé, elles ont choisi d'éditer une affiche et une brochure. Le theme retenu est "plus de 50% des marques d'ordinateurs domestiques sont au standard MSX ${ }^{\prime \prime}$.
Créée par Jean Kaminsky et Stéphane Cellier, la campagne rappelle le rôle de premier plan mondial du MSX.
Une annonce publicitaire institutionnelle paraît également
dans les magazines comme Tilt, Soft et Micro, Ventes, etc. Des concours sont organisés dans les mêmes publications et sur l'antenne de RFM pour gagner des ordinateurs.
Microsoft, Philips et Sony ont été les principaux sponsors de cette campagne. Les soutiens les plus actifs ont été par ailleurs: Spectravidéo, Goldstar, Toshiba, et deux distributeurs de logiciels: Maubert Electronique, et Lutec.
Notre magazine, qui a organisé cette campagne, se rejouil de l'esprit constructif qui a animé les responsables de la douzaine des sociétés sans lesquelles cette promotion nationale indispensable n'aurait pas été possible.

Un MSX

Vous avez vu sur notre couverture le noureau micro-ordinateur Sony? II vous tente le HB-501 F? II sera a vous si vous devenez l'heureux gagant de notre concours. Alors, à vos méninges et... bonne chance.
1^{10} question :
Combien de logiciels sont présentés dans la gamme Sony MSX ?
${ }^{2}$ ' question :
Au cours de quel mois les premiers micro-ordinateurs MSX sont-ils arrives sur le marche mandial $\begin{array}{ll}\text { Mars } 82 \\ \text { Decembre } 84 & \text { Janvier } 83 \\ \text { Seplembe }\end{array}$
Decembre 84
Devembre $84 \square$ Septembre $84 \square$ Fevriet 85
Les bulletins comportant les honnes toponses seront adrenees a Al Nevter 85

Olympia PHC-2

La compagnie Olympia présente clepuis peu, un MSX portant sa marque. En réalité, le matériel n'est pas nouveau puisqu'il s'agit d'un Daewoo, fabriqué en Corée et qui porte déjà les couleurs Yeno sous la référence : DPC-64.

Un excellent clavier

La référence pourrait être trompeuse : PHC-2, mais ce modèle est bien un MSX version 1. On remarque la mention "Manufactured by Daewoo" placée juste en dessous du port cartouche. Sa présentation est des plus classique, typique des consoles MSX : clavier avec pavé de touches directionnelles séparées, cinq touches de fonctions donnant accès par "SHIFT" à dix fonctions. On retrouve, bien entendu les habituelles touches STOP, SELECT, HOME/CLS, INS et DEL. Le clavier est d'un type mécanique qui a l'avantage d'être accentué d'origine. Un "plus" pour tous ceux qui désirent utiliser un traitement de texte. L'accès aux lettres accentuées est direct, alors que la pression de "Shift" est nécessaire pour obtenir les chiffres. En effet, au début il est fréquent de se tromper, car les chiffres sont en bas des touches. La frappe est très agréable, le clavier offrant une réponse franche et souple. Enfin, le PHC-2 offre un autre "plus": tous les signes graphiques sont indiqués sur la face avant des touches du clavier.

Toutes liaisons possibles

La construction de la cocque de la console est une belle réalisation, solide et très bien finie. Sur le côté gauche, on trouve l'interruptcur de marche/arrêt. La mise sous tension est signalée par un
voyant rectangulaire rouge, sur le côté gauche du clavier. A l'arrière de la machine sont installées quatre connexions : une prise "Cinch" pour la sortie son, une sortie "RGB" pour brancher le câble Péritel, une interface imprimante, une interface "Bus d'extensions'". Au côté de celles-ci on trouve le câble d'alimentation (intégré). Sur le côté droit se trouvent placées : deux prises pour manettes de jeux et la prise pour le magnétoscope. Sur le devant de la console, un port cartouche. La trappe de ce dernier dispose d'un contacteur qui permet, pour éviter la destruction des circuits, de couper automatiquement l'alimentation de la console, si l'on change une cartouche sans éteindre la machine.

Doté de cet ensemble de connecteurs, le PHC-2 peut assurer toutes les liaisons possibles avec les périphériques : du lecteur de disquettes ou de cassettes au crayon optique, sans oublier les synthétiseurs.

Un matériel de qualité

Le PHC-2 est un 64 Ko , offrant un peu moins de 29 Ko sous Basic. L'utilisation générale de la machine est très agréable, grâce notamment à l'excellent clavier. Ce dernier dispose d'un voyant rouge, installé sur la touche "CAPS", pour signaler qu'il se trouve en position majuscule. Ce que l'on pourrait reprocher aux MSX, c'est qu'ils ressemblent vite à une centrale électrique, dès que l'on connecte des périphériques : un câble pour la prise Péritel, un autre pour le magnétophone, sans parler de ceux de l'imprimante, de l'unité de disquettes, de l'alimentation, des manettes. Ce n'est pas un reproche particulier au PHC-2, mais à l'ensemble des MSX.
L'installation d'une cartouche, le branchement d'un périphérique, le chargement d'un programme ne posent aucun problème sur l'Olympia PHC-2. La machine est vraiment solide, bien finie. Un bon choix pour un matériel de qualité.

Caractéristiques

Mémoire vive : 64 Ko , dont $28,8 \mathrm{Ko}$ uti- bus d'extensions, 1 port cartouches, lisables sous Basic.
Clavier: Azerty, accentué français. 2 manettes de jeux, magnétophone. 73 touches mécaniques. Prix : 2990 F TTC.
Ecran: 24 ligne20de 40 caractères,
Péritel.
Connecteurs : son, RGB, imprimante,

Olympia International : 10, av. Réaumur. 92142 Clamart.

La carte RS 232 de Philips

Abstract

Un ordinateur, qu'il soit MSX ou non, est en lui même inexploitable. Ce qui le rend efficace ce sont ses périphériques. A quoi servirait votre MSX sans son écran, son clavier ou sa cassette? Il existe un grand nombre de périphériques qui demandent un interfaçage (comprenez une connexion) normalisé. Une de ces normes est la norme RS 232.

Avec une interface RS 232, vous pouvez contrôler plusieurs types d'imprimantes, relier votre ordinateur à un autre ordinateur, même non MSX, connecter votre MSX sur un MODEM et consulter par téléphone un nombre impressionnant de bases de données..
Nous avons eu l'occasion de tester pour vous une interface à la norme RS 232 qui sera proposée par Philips dès la rentrée. Cette interface se présente sous la forme d'une cartouche enfichable qui se branche dans un port d'extension de votre MSX. Cette cartouche est surmontée d'un connecteur CANON 25 broches, qui est le connecteur standard en la matière. La comptabilité est totale avec les autres constructeurs (nos essais se sont déroulés sur un SONY HB 75).

Quelques mots sur la norme RS 232

La norme RS 232 est une norme fixée pour faciliter l'échange de données en mode série (les bits sont envoyés les uns aprés les autres et non en même temps). Elle impose l'existence d'un certain nombre de signaux et de vitesses de transfert bien précises.
Les vitesses de transfert se mesurent en bauds (un baud correspond à un bit par seconde). Les vitesses standards sont de $50,75,110,300,600,1200,1800,2400$. $3600,4800,7200,9600$ et 19200 bauds.
Les signaux sont: SG, Signal Ground : la masse commune au système. TD: Transmit Data ; le signal de sortie des donnees. RD: Receive Data: Ie signal de réception des données.
Ces trois signaux suffisent pour établir un dialogue émission-reception entre deux ordinateurs. Mais un certain nombre de signaux supplémentaires sont necessaires pour affiner la transmission. Ces signaux (RTS, CTS, DSR, DTR) sont utilisés pour signaler qu'un ou

l'autre des interlocuteurs est près à recevoir ou à émettre.

Composition de l'interface RS 232 MSX PHILIPS

L'interface est composée de trois circuits principaux, deux d'entre cux sont des circuits spécialisés dans la production de données en série (INTEL 8251 et INTEL 8253), le troisième est une Rom de 8 K qui contient des extensions au BASIC
Ainsi à l'initialisation, le système MSX reconnaît la présence de la cartouche RS 232. La ROM s'installe en mémoire centrale aux adresses 4000 H à 5 FFFH du SLOT dans lequel elle est enfoncée. A partir de cet instant, le BASIC MSX reconnait un "DEVICE" (périphérique) de plus. A CAS, CRT, GPR et LPT s'ajoute un COM (abréviation de COMMUNICATION). Les commandes SAVE, LOAD, MERGE et RUN peuvent donc s'écrire
SAVE "COM:" : avec cette commande, le MSX se met en mode d'émission et transmet le programme en mémoire vers la cartouche RS 232.
LOAD "COM:" : avec cette commande, le MSX se met en mode réception et attend l'arrivée d'un programme en provenance de la cartouche RS 232. Ce programme est directement installé en mémoire.
MERGE "COM:" : cette commande fonctionne comme la commande LOAD, mais le programme réceptionné s'ajoute au programme déjà present en mémoire.
RUN "COM:" : cette commande fonctionne comme la 24 mmande 10 AD mais le programme est directemont oxt cuté une fois son chargement terming

Toutes les commandes de gestion de fichiers (PRINT $=$, OPEN, INPUT $=$, CLOSE...) fonctionnent également avec la carte RS 232. Ces commandes permettent l'établissement d'un dialogue très fin entre deux machines suivant n'importe quel protocole.
En plus du DEVICE, la ROM ajoute une dizaine de nouvelles instructions au BASIC par l'intermédiaire de la fonction CALL. CALL COMON ("'’): cette instruction autorise l'interface RS 232 à interrompre le programme en cours s'il reçoit un caractere.
CALL COMOFF ("'"): cette instruction interdit l'interruption du programme par l'interface RS 232.
CALL COMSTOP ("'") : cette instruction suspend l'effet de l'instruction suivante.
CALL COM (GOSUB numéro de ligne): après cette instruction, lors de la réception d'un caractère, le programme se branche à la sous-routine spécifiée.
CALL COMBREAK (expression): cette instruction génère un BREAK sur la ligne.
CALL COMDTR (expression): cette instruction permet de choisir l'état du signal DTR.
CALL COMSTAT (variable): cette instruction fournit dans la variable spécifiée l'état de l'interface.
CALL COMINI (champ, vitesse de réception, vitesse d'émission, time out): cette instruction permet d'initialiser tous les paramètres nécessaires à la bonne gestion de la transmission.
CALL COMTERM: cette instruction permet de transformer l'ordinateur MSX en un terminal complet et autorise la connexion sur les divers serveurs de bases de données sans programmation specifique.
Ne doutons pas que l'apparition d'interface de cette classe va donner naissance aux applications les plus diverses. notamment la possibilité de repécher la multitude de logiciels qui tournent sous CP/M sur d'autres machines et de les initialiser sous MSXDOS.
A l'aide de eette carte, les fanatiques de tespionnage pourront estaver de se brancher sur le PENTAGONE (ou le KREMI IN) I laide de leur MSX CIA. KGB, tenez vous bien, les pirates MSX be tant plus toin

Alaza Dermime

Initiation à I'ASSEMBLEUR

> Vous êtes fatigué d'attendre devant yotre écran le résultat d'un tri ; la torpille nucléaire de votre dernière réalisation de jeu d'arcade se déplace à la vitesse foudroyante d'un escargot rhumatisant ; vous êtes excédé par la lenteur du Basic ê l'absence de fonctions performantes...
> Alors, pas de doute, vous êtes candidat a l'étude de l'assembleur. Il est évident que pour aborder cette matière, de bonnes notions de Basic et d'architecture interne de l'ordinateur sont nécessaires. Les notions de variable, de boucle, de saut ou de tableau (DIM) ne doivent pas être étrangères au candidat à l'étude de l'assembleur. Les prodiges réalisés par la programmation en assembleur valent largement l'effort consenti pour apprendre ce langage.

L'assembleur est considérablement plus complexe que le Basic. Par contre, il vous permet le contrôle total de votre système avec une flexibilité inégalée dans la manipulation des données, une vitesse d'exécution accrue, une réduction de la taille de certains programmes et enfin, la satisfaction de pouvoir dire à vos amis : non, ce n'est pas du Basic, je l'ai écrit moi-même en assembleur.

Généralités

La démarche permettant d'écrire un programme en Assembleur est fondamentalement différente de celle entreprise en vue de réaliser un programme Basic. Dans votre micro-ordinateur, le langage Basic est dit : INTERPRĖTE. Cela signifie que les lignes de programme sont lues, analysées, transformées en code machine et exécutées les
unes après les autres. Elles sont successivement interprêtées par la machine grâce à un programme interne appelé «interpréteur Basic». pour travailler en Basic, il suffit donc d'écrire un programme dans la mémoire centrale et de donner l'ordre «RUN » à l'ordinateur. Pour l'assembleur, les choses ne sont pas aussi simples. En effet, l'assembleur n'est pas un langage interprété mais bien un langage compilé. Avant de lancer l'exécution d'un programme assembleur, il faut le compiler. Cette opération consiste à traduire l'entier du programme en code machine. Le résultat de la traduction en code machine devient un programme exécutable autant de fois que l'utilisateur le désire et appelé programme objet. Le programme écrit en langage assembleur et non encore compilé s'appelle programme source. Le programme objet est uniquement composé d'une suite de codes machine et il est pratiquement impossible à
déchiffrer. Par contre, le programme source peut être relu et modifié sans problèmes. Il suffira de recompiler ce dernier après modifications afin de creeer un nouveau programme objet exécutable.
Pour écrire un programme source, on utilise un éditeur. Ensuite, il suffit de compiler le programme source à l'aide de l'assembleur afin d'obtenir le programme objet. Ces deux programmes (l'éditeur et l'assembleur) font souvent partie d'un même logiciel appelé éditeur-assembleur.
Il ne faut donc pas confondre le langage assembleur avec le programme permettant la compilation du programme source, également appelé assembleur.

Introduction

Pour commencer, examinons la démarche à suivre a l'aide d'un exemple simple : soit linstruction Basic $\mathrm{Z}=\mathrm{B}+\mathrm{C}$. Pour l'écrire en assembleur, il sera nécessaire de :

1. Pointer la valeur de B et la placer dans l'accumulateur. L'accumulateur constitue l'endroit privilégié de traitement de votre microprocesseur. On peut le considérer comme un « tiroir »dans lequel on dépose les objets à traiter.
2. Positionner un pointeur sur la variable C.
3. Additionner au contenu de l'accumu-
lateur le contenu de l'endroit pointé (C).
4. Sauver le nouveau contenu de l'accumulateur à l'adresse devant contenir la variable Z .
La lecture de ces quelques lignes montre a quel point le langage assembleur est proche de la fonction primaire de l'ordinateur. En effet, les différentes actions permises par ce langage sont élémentaires. C'est en ayant la possibilité de réaliser ses applications au niveau élémentaire que le programmeur pourra obtenir de sa machine les performances désirées et impossibles en Basic. Le petit exemple ci-dessus souffre d'ailleurs de grosses restrictions. En effet, si la précision de l'opération Basic $\mathrm{Z}=\mathrm{B}+\mathrm{C}$ ne dépend que du type de variable (entière ou flottante), en assembleur, le programme décrit ne fonctionne que pour des variables Z, B et C dont les valeurs sont comprises entre 0 et 255 .
Chaque instruction décrite en langage assembleur est traduite en langage machine par un utilitaire spécialisé appelé ASSEMBLEUR. En langage machine, chaque instruction est composée d'une suite de 0 et de 1 . Par exemple : 001111110 . Si cette suite prend tout son sens pour un ordinateur, il faut avouer qu'elle n'est pas évidente pour le cerveau humain qui préfère globaliser les concepts sous forme de mots. C'est la raison d'être du langage assembleur. En effet, il permet au programmeur de remplacer les différentes instructions élémentaires par des abréviations. Ces abréviations portent le nom de mnémoniques.
Helas, les premiers concepteurs de ce langage ćtant anglo-saxons, c'est dans cette langue que les mnémoniques ont eté écrites. Par exemple, CHARGER se dit LOAD en anglais ; le mnémonique correspondant sera done ID.
Pour terminer les géneralités, rappelons que chaque ordinateur est equipe d'un cour, c'est-a-dire d'un organe de calcul et de trattement. Ce dernier est
constitué d'un circuit appelé microprocesseur.
Le microprocesseur est un composant électronique muni de 40 "pattes ". Il se présente sous la forme d'un petit parallèlépipède rectangle très plat de 6 centimetres sur 2
De nombreux types de microprocesseurs existent présentant chacun divers avantages et inconvénients. Le langage Assembleur étant trés proche du microprocesseur, il sera différent suivant le type de microprocesseur utilisé. Celui que nous vous proposons d'étudier s'appelle Z80. Il équipe des ordinateurs aussi divers que l'AMSTRAD, les MSX, les TRS-80 de chez TANDY...
C'est l'un des processeurs les plus célèbres et malgré son grand âge (8 ans), il est considéré comme l'un des meilleurs processeurs de sa catégorie.
Le Z80 est un microprocesseur dit de 8 bits. Cela signifie qu'il est capable de traiter 8 états 0 ou 1 simultanément. Une confusion règne dans les esprits même les plus éclairés depuis l'apparition du microprocesseur 16 bits. Pour simplifier les choses, il faut savoir qu'il existe trois critères permettant de classifier les différents types de microprocesseur :
1) Le nombre de bits de données que le microprocesseur est capable de lire simultanément ;
2) Le nombre de bits que le microprocesseur est capable de traiter simultanément ;
3) Le nombre de bits permettant d'adresser un endroit quelconque situé dans l'espace mémoire.
Le Z80 est un microprocesseur capable de lire et de traiter simultanément 8 bits de données (1 et 2). Il est équipé d'un bus d'adresse de 16 bits permettant d'adresser 65536 emplacements mémoire différents (16 états 0 ou 1 permettant 65536 possibilités).

Et les variables ?

En assembleur, il n'existe pas d'identificateur de variable. En Basic, ou dans tout autre langage èvolué, chaque variable porte un nom qui permet de retrouver son contenu. Le langage évolue s'occupe de placer le contenu de la variable à un emplacement mémoire et d'aller le récuperer lorsque cela est nécessaire.
Considérons le programme Basie sulvant
$10 \mathrm{~A}=4$
$20 \mathrm{~B}=5$
$30 \mathrm{C}=\mathrm{A}+\mathrm{B}$
40 PRINT C

En Basic, les différents emplacements mémoire oû sont stockés les contenus des variables A, B et C ainsi que l'endroit oul s'effectue l'addition n'ont aucune importance pour le programmeur. En assembleur, ils sont aut contraire trés importants. En effet, l'assembleur n'utilise pas de variables. Les différentes valeurs utilisées par le programme dowent être écrites directement aux adresses mémoire adéquates. Autrement dit, tout doit être parfaitement localisé puisqu'on travaille directement dans la mémoire.
Quant au microprocesseur, il possède sa propre petite mémoire interne. Les différents emplacements de sa mémoire interne portent le nom de registres et sont identifiées chacun par une lettre. Ils servent à contenir les donnees sur lesquelles le programmeur désire effectuer différentes opérations et à effectuer ces dernières.
Le diagramme suivant représente les différents registres du Z80:

8 bits	8 bits	8 bits	8 bits
A	F	A^{\prime}	F
B	C	B^{\prime}	C^{\prime}
D	E	D'	E^{\prime}
H	L	H^{+}	L'
16 bits		16 bits	
IX		PC	
IY		SP	
I	R		

Le registre A constitue la reponse à la question "Où l'addition a-t-elle lieu? ? En effet, le registre A, appelé accumulateur, contient toujours une des deux opérandes dans les instructions d'addition, de soustraction, de fonction logique... Le résultat de l'opération effectuée se retrouve toujours dans ce registre.
Le registre F, ou FLAG (FLAG signifie drapeau en anglais), est un registre particulier oú sont mémorisés les indicateurs de dépassement de capacité, de valeur 0 , de valeur acgative... Les autres registres sont generalement utilises comme pointeurs vers len difterentes adresses de la mémore utilisées.
Remaraue : les registres B, C, D, E, Het L somt des registies 8 biss. Or le bus d'adresee du 280 ent soumatitut de 10 bits. Un seul de ces regiatres ne peut donc suffire à adresser distinctement um smptivement memolre, Its sont done
couplés pour former les trois registres de 16 bits suivants : BC, DE et HL Les registres PC et SP sont deux registres de 16 bits. Le PC, ou Program Counter (compteur de programme), pointe toujours vers une adresse mémoire. Cette adresse contient une indication permettant de connaître l'endroit précis où se déroule le programme aे l'instant t . Le PC contient donc une adresse qui fonctionne de façon similaire au pointeur de la ligne Basic en cours d'exécution. Le SP, ou Stack Pointer (pointeur de pile), est un registre très important. Il contient l'adresse de la pile (stack). Le programmeur peut positionner la pile là où il le désire mais il a tout intérêt à la disposer en haut de la mémoire.
A présent, voyons à quoi sert cette pile et ce qu'elle peut bien contenir :
Une pile (du verbe empiler, comparez à une pile d'assiettes) constitue une collection d'objets où des ajouts et des retraits peuvent être effectués. Il existe deux sortes de piles : la pile LIFO et la pile FIFO
LIFO : de l'anglais Last in First out, signifie «dernier entré, premier sorti ». Cette pile peut se comparer à une pile d'assiettes. La dernière assiette ajoutée à la pile sera la première que l'on prendra lorsqu'un retrait sera nécessaire.
FIFO : de l'anglais First in First out, signifie « premier entré, premier sorti». La meilleure comparaison pour cette pile est l'appareil qui tombe le premier dans les mains de l'acheteur.
La pile de Z80 est une pile LIFO. Seul son sommet est accessible (pour prendre la troisième assiette, il faut d'abord enlever les deux premières). Les autres registres sont plus- particuliers et ne seront pas abordés au cours de ce premier article.

La synthaxe et la notation

En Basic, lorsque nous décrivons une variable, nous parlons de son contenu. L'endroit où elle est stockée n'a aucune importance puisqu'elle a un nom. Lorsqu'on donne le nom d'une variable Basic, c'est donc bien pour utiliser son contenu.
En assembleur, les variables n'ont pas de nom. Elles sont connues uniquement par leur adresse. Il faut donc faire la distinction entre une adresse et la valeur qui s'y trouve stockée. Si ADR représente une adresse, nous indiquerons ADR pour parler de l'adresse et (ADR) pour parler de son contenu. Rappelons ici que ADR est un nombre de 16 bits
et que (ADR) est un nombre de 8 bits. Pour le microprocesseur, une instruction est une suite de bits appelée code opératoire. Les valeurs des suites de bits représentant les différents codes opératoires sont généralement représentées en notation hexadécimale. Comme le cerveau humain n'aime pas beaucoup manipuler des chiffres, les codes opératoires seront représentés par des mnémoniques correspondant aux notations hexadécimales.
Pour chacune des instructions que nous allons décrire, nous donneröns le code opératoire en hexadécimal, la mnémonique (ou opérateur) correspondante et le format des ... Par convention, A, B, C, D, E, H, L et SP identifient les registres correspondants du microprocesseur ; adr signifie adresse ; (adr) identifie le contenu de l'adresse adr ; r signifie registre ; n signifie constante sur 8 bits ; (r) indique le contenu de l'adresse contenue dans le registre r.

Les instructions de base

Le microprocesseur peut recopier le contenu d'une de ses mémoires internes (registre) dans une autre. Cette opération s'appelle une copie de registre à registre.
Le format général de cette opération est le suivant :

> LD r, r,
où LD est la mnémonique ou opérateur et r et r^{\prime}, les opérandes. r et r^{\prime} peuvent être n'importe quel registre parmi A, B, C, D, E, H et L.
L'instruction LD (load en anglais signifie charger) copie le contenu du registre r' dans le registre r.
Chaque combinaison de l'instruction Ld avec deux registres possède son propre code opératoire. Le code opératoire est constitué d'un simple octet (8 bits) représenté par une valeur hexadécimale à deux chiffres.
Le tableau suivant donne la liste des différents codes opératoires pour l'instruction LD :

En observant ce tableau, nous constatons que les codes opératoires suivent une logique évidente. Le trou entre Let A sera comblé par la suite. Il est évident que les instructions de type LD A,A ; LD H,H..., correspondant à la diagonale 40 à 7 F , ne présentent aucun intérêt.
Par exemple : copier le contenu du registre H dans l'accumulateur A s'écrira:

LD A,H

L'assembleur fournira le code opératoire 7C.
Autre exemple : copier le contenu de la paire de registre BC dans la paire de registres DE s'écrira

> LD D, B
> LD E,C

L'assembleur fournira la suite de codes opératoires 50,59 .
Il existe une méthode plus courante permettant de copier les registres. Elle utilise la pile. Il suffit de «pousser» le contenu du registre BC dans la pile et d'ensuite retirer le contenu de la pile dans DE. Cette technique sera expliquée par la suite.
Les différents emplacements mémoire contiennent des valeurs d'une taille de 8 bits. Ces valeurs peuvent être chargées de la mémoire vers un registre et vice-versa.
Les mouvements entre la mémoire et les registres sont très limités. Le registre HL est le plus utilisé pour ce type d'opération. En effet, le jeu d'instruction de HL est plus riche que ceux de BC et de DE. Bien entendu, par l'intermédiaire de HL, on peut charger le contenu d'une mémoire dans n'importe quel registre et vice versa. Les instructions utilisées à cet effet sont les suivantes :

$$
\begin{aligned}
& \text { LD r, (HL) } \\
& \text { et } \\
& \text { LD (HL), r }
\end{aligned}
$$

où r représente n'importe quel registre 8 bits (A, B, C, D, E, H et L).
Les codes opératoires correspondants sont fournis par le tableau suivant

B								
B	40	41	42	43	44	45		47
C	48	49	4 A	4 B	4 C	4 D		4 F
D	50	51	52	53	54	55		57
B	58	59	5 A	5 B	5 C	5 D		5 F
H	60	61	62	63	64	65		67
L	68	69	6 A	6 B	6 C	6 D		6 F
A	78	79	7 A	$7 B$	7 C	7 D		7 F

	B	C	D	E	H	L	A
$\mathrm{r},(\mathrm{HL})$	46	4 E	56	5 E	66	6 E	7 E
$(\mathrm{HL}), \mathrm{r}$	70	71	72	73	74	75	77

Vous pouvez, à l'aide de ce tableau, compléter le trou du précédent. Seule la case de croisement correspondant à :

$$
\mathrm{LD}(\mathrm{HL}),(\mathrm{HL})
$$

n'a pas été décrite. Son code opératoire est 76. Au lieu de recopier le contenu de l'adresse pointée par HL sur lui-même, le code opératoire 76 arrête le microprocesseur (HALT).
D'autres méthodes sont permises pour effectuer des mouvements entre l'accumulateur et la mémoire :
1°) Mouvement entre A et un emplacement mémoire dont l'adresse est contenue dans une des paires de registres BC ou DE.

Syntaxe

LD A, (BC)	0 A
LD A, (DE)	1 A
LD (BC), A	02
LD (DE), A	12

LD (DE), A 12
2°) Mouvement entre A et un emplacement mémoire indiqué par une adresse en clair :

Syntaxe

$$
\begin{array}{ll}
\text { LD A, (adr) } & 3 \text { A VW XY } \\
\text { LD (adr), A } & 32 \text { VW XY }
\end{array}
$$

code opératoire
oủ VW et XY sont les valeurs hexadécimales représentant l'adresse réelle de la mémoire avec la convention suivante:
VW représente l'octet de poids faible de l'adresse mémoire et XY représente l'octet de poids fort.

Exemple : LD A, (3B4C) charge dans l'accumulateur le contenu de la mémoire 3B4C et produit comme code opération 3A 4C 3B.
Cette inversion entre le poids fort et le poids faible de l'adresse à l'intérieur du code opératoire se retrouvera dans toutes les instructions portant sur une adresse directe mémoire.

Les chargements immédiats

Il est évident qu'il est indispensable de pouvoir charger une constante directement dans I'accumulateur ou dans un registre 8 bits ainsi que de pouvoir charger une adresse directement dans une paire de registres (BC, DE et HL).

Syntaxe
LD r, n
LD (HL), n
LD HL, adr
LD DE, adr
LD BC, adr
code opératoire voir tableau 36 n 21 VW XY 11 VW XY 01 VW XY

Les instructions de manipulation de pile

Pour manipuler la pile, deux instructions sont à notre disposition :
PUSH : permet de pousser une paire de registres dans le pile,
POP : permet de pousser le sommet de la pile dans une paire de registres.
A la suite d'unPUSH ou d'un POP,

	B	C	D	E	H	L	A
LD r, n	06 n	$0 \mathrm{E} n$	16 n	$1 \mathrm{E} n$	26 n	2 En	$3 \mathrm{E} n$

REMARQUE : pour toutes les instructions vues jusqu'à présent, une seule mnémonique a été utilisée : LD.
D'autres possibilités existent pour charger des registres de 16 bits ou pour la technique du chargement indexé. Elles dépassent le cadre de cet article. En voici
l'adresse de la pile contenue dans le registre SP est respectivement décrémentée ou incrémentée de deux octets. En effet, la pile se trouvant en haut de mémoire, chaque fois qu'on y ajoute quelque chose (PUSH), son adresse de début diminue.

	AF	BC	DE	HL	IX	IY
PUSH	F5	C5	D5	E5	DD E5	FD E5
POP	F1	C1	D1	E1	DD E1	FD E1

la syntaxe et les codes opératoires :
syntaxe des instructions indexées :
1 - LD r, (IX + n)
2 - LD r, (IY + n)
3 - LD (IX + n), r
4 - LD (IY + n), r
code opératoire :

	B	C	D	E	H	L	A
1-	DD 46 n	DD 4E n	DD 56 n	DD 5E n	DD 66 n	DD 6E n	DD 7En
2-	FD 46 n	FD 4E n	FD 56 n	FD 5E n	FD 66 n	FD 6 En	FD 7En
3-	DD 70 n	DD 71 n	DD 72 n	DD 73 n	DD 74 n	DD 75 n	DD 77 n
4.	FD 70 n	FD 71 n	FD 72 n	FD 73 n	FD 74 n	FD 75 n	FD 77 n

Instructions 16 bits codes opératoires LD SP, HL F9
LD SP, IY
DD F9
LD SP, IX
FD F9
LD HL, (adr)
LD (adr), HL
LD BC, (adr)
LD (adr), BC
LD DE, (adr)
LD (adr), DE
LD SP, (adr)
LD (adr), SP
LD IX, (adr)
LD (adr), IX
LD IY, (adt)
LD (adr), IY

Comme nous l'avons laissé entrevoir précédemment, pour copier le contenu de BC dans DE, on peut remplacer :
$\begin{array}{ll}\text { LD } & \text { D }, ~ B \\ \text { LD } & \text { C }\end{array}$

EXERCICES

1) Ecrivez le programme assembleur qui échange les contenus de B et de C. Donnez les codes opératoires correspondants.
2) Si le contenu de la mémoire est le suivant :

adresse	contenu
8036	00
8037	08
8038	10
8039	18
803 A	20
$803 B$	28
803 C	30
$803 D$	38
$803 E$	40
$803 F$	48

a) que contiendra l'accumulateur après la séquence suivante :

LD HL, 803D
LD L, (HL)
LD A, (HL)
b) écrivez le programme objet correspondant (codes opératoires).
La solution des exercices se trouve en fin d'article.

Instructions arithmétiques et logiques

Après avoir examiné les différentes instructions de manipulation de données, voyons à présent les principales instructions arithmétiques et logiques.
Ces opérations portent toujours sur l'accumulateur et un autre registre ou une constante.
L'opérande sera symbolisée par op. Elle peut prendre les formes suivantes :

- Un des registres A, B, C, D, E, H ou L.
- Une constante n .
- Le contenu de la mémoire pointée par $\mathrm{HL} \longrightarrow$ (HL).
- Un adressage indexé par rapport à $\mathrm{IX} / \mathrm{IY} \longrightarrow(\mathrm{IX}+\mathrm{n}) /(\mathrm{IY}+\mathrm{n})$.
Il est tres important d'analyser l'effet de ces instructions sur le registre F. Le registre F contient 5 bits importants. Ils sont identifiés par une lettre :
$-\mathrm{C}=$ bit de report (Carry).
$-Z=$ bit de Zéro.
$-\mathrm{V}=$ bit de dépassement (oVerflow).
$-\mathrm{S}=$ bit de Signe.
$-\mathrm{P}=$ bit de Parité (nombre de bits à
1 pair ou impair).

Addition sans report

Syntaxe : ADD A, op.
BASIC correspondantes. Le résultat de l'opération se retrouve dans l'accumulateur.

Codes opératoires :

B	C	D	E	H	L	(HL)	A	n	(IX +n$)$	$(\mathrm{IY}+\mathrm{n})$
80	81	82	83	84	85	86	87	C6n	DD86n	FD86n

Après l'exécution de l'instruction, A contient la somme de l'ancienne valeur de A et du contenu de l'opérande spécifiée.

Addition avec report

Syntaxe : ADC A, op.
Codes opératoires :
Table de vérité :

A	opérande	AND	OR	XOR
0	0	0	0	0
0	1	0	0	0
1	0	0	1	1
1	1	1	1	0

B	C	D	E	H	L	(HL)	A	n	(IX + n)	$(\mathrm{IY}+\mathrm{n})$
88	89	8 A	8 B	8 C	8 D	8 E	8 F	CEn	DD8En	FD8En

Après cette instruction, le contenu de A vaut la somme de l'ancien contenu de A, du contenu de l'opérande spécifiée et du bit de report de l'opération précédente s'il y en a un.
Dans les deux instructions précédentes, les indicateurs $\mathrm{C}, \mathrm{Z}, \mathrm{V}$ et S sont positionnés en fonctions du résultat de l'opération.

Soustraction avec et sans report

La soustraction fonctionne selon le

Les indicateurs $\mathrm{C}, \mathrm{Z}, \mathrm{P}$ et S sont affectés par ces opérations. L'indicateur C est systématiquement remis à zéro.

Syntaxe :AND op
OR op
XOR op

Codes opératoires :

	B	C	D	E	H	L	(HL)	A	n	(IX +n$)$	$(\mathrm{IY}+\mathrm{n})$
AND	A0	A1	A2	A3	A4	A5	A6	A7	E6n	DDA6n	FDA6n
XOR	A8	A9	AA	AB	AC	AD	AE	AF	EEn	DDAEn	FDAEn
OR	B0	B1	B2	B3	B4	B5	B6	B7	F6n	DDB6n	FDB6n

même principe que l'addition.
Syntaxe : SUB op (soustraction sans report)
SBC A, op (avec report).
Codes opératoires :

L'instruction de comparaison

L'opération de comparaison est une simple soustraction entre l'accumulateur et l'opérande spécifiée. Les indica-

	B	C	D	E	H	L	(HL)	A	n	$(\mathrm{IX}+\mathrm{n})$	$(\mathrm{IY}+\mathrm{n})$
SUB	90	91	92	93	94	95	96	97	D6n	DD96n	FD96n
SBC	98	99	9 A	9 B	9 C	9 D	9 E	9 F	DEn	DD9En	FD9En

Remarque : La multiplication et la division ne font pas partie des instructions de base du Z80, elles doivent être simulées par une série d'additions ou de soustractions ou de manipulations de bits.

Les opérations logiques AND, OR et XOR

L'action de ces instructions qui portent sur l'accumulateur et une opérande identique à celles décrites pour l'addition est similaire à celles des fonctions
teurs sont positionnés en fonction du résultat mais l'accumulateur n'est pas modifié.
Si les 8 bits sont en format non signé, on a la table suivante :

relation	Z	C
$\mathrm{A}<\mathrm{op}$	0	1
$\mathrm{~A}=\mathrm{op}$	1	0
$\mathrm{~A}>\mathrm{op}$	0	0

Syntaxe : CP op
Codes opératoires :
son (CP) suivie d'une instruction de saut.

B	C	D	E	H	L	(HL)	A	n	(IX +n$)$	(IY +n$)$
B8	B9	BA	BB	BC	BD	BE	BF	FEn	DD BE n	FD BE n

Il existe d'autres opérations arithméti-
ques et logiques. En voici une brève des-
cription :

- INCREMENTATION (ajouter 1) : INC
- DECREMENTATION (soustraire 1) : DEC

	B	C	D	E	H	L	(HL)	A	IX	IY
INC	04	0 C	14	1 C	24	2 C	34	3 C	DD 34 n	FD 34 n
DEC	05	0 D	15	1 D	25	2D	35	$3 D$	DD 35 n	FD 35 n

- Complémentation de l'ACCUM (inversion des bits :

CPL ED 44

- Complémentation et mise à 1 de l'indicateur de report (CARRY) :

CCF (clear carry flag 3F
SCF (set carry flag) $\quad 37$

- Instruction sans effet : NOP 00
- On trouve également des instructions d'addition, d'incrémentation et décrémentation entre les registres 16 bits :

Une instruction FOR...NEXT sera simulée par une instruction d'incrémentation ou décrémentation suivie d'un test (CP) et d'un saut.

Les sauts

Il existe quatre types de saut. On distingue des sauts ABSOLUS et RELATIFS ; CONDITIONNELS et INCON-

	BC	DE	HL	SP	IX	IY
ADD HL,	09	19	29	39	-	-
INC	03	13	23	33	DD 23	FD 23
DEC	0B	1B	2B	3B	DD 2B	FD 2B

EXERCICE

Si la mémoire contient :

adresse	contenu
8000	12
8001	24
8002	28

Ecrire un programme qui sauve à l'adresse 8003 la somme des contenus des deux premières mémoires (8000 et 8001) moins le contenu de la troisième. Utilisez HL pour pointer sur la mémoire.
Ensuite, écrivez le code objet produit par le programme.

Sauts et sous-routines

L'assembleur ne possède pas d'instruction équivalente au IF ...THEN...ELSE et au FOR... NEXT du Basic. Il est par contre doté d'instructions équivalentes aux GOTO et GOSUB.
Un IF...THEN sera simulé en assembleur par une instruction de comparai-

LD
LD
SUITE $:$ ADD
INC
DEC
JR

1. Saut absolu conditionnel
Syntaxe :
JP adr
Code opératoire : C3 VW XY A la suite de l'instruction JP adr, le PC se retrouve à l'adresse adr. Le programme continuera donc à cette adresse.
adresse.
2. Saut absolu conditionnel.

> syntaxe

Le problème consiste à déterminer la valeur de YY. Après avoir rencontré l'octet 20 suivi de l'octet YY, le PC se trouve déjà à l'adresse suivante. Pour revenir sur YY, il faut faire -1 et afin de pointer sur le 20 , il faut faire -2 et

	syntaxe	code opératoire
saut si non zéro	JP NZ, adr	C2 VW XY
Saut si zéro	JP Z, adr	CA VW XY
saut si report	JP C, adr	DA VW XY
saut si non report	JP NC, adr	D2 VW XY
saut si négatif	JP M, adr	FA VW XY
saut si positif	JP P, adr	F2 VW XY
saut si parité paire	JP PE, adr	EA VW XY
saut si parité impaire	: JP PO, adr	E2 VW XY

ainsi de suite jusqu'à remonter à 86 . Au total cela fait -5 . En binaire signé, -5 vaut FB.
JR NZ, SUITE sera traduit par 20 FB syntaxes des différents sauts relatifs avec leur code opératoire :
JR déplacement 18 XX
JR Z, déplacement 28 XX
JR NZ, déplacement 20 XX
JR C, déplacement 38 XX
JR NC, déplacement 30 XX
Le grand avantage des sauts relatifs par rapport aux sauts absolus est que les programmes qui les utilisent sont indépendants de leur adresse d'implantation dans la mémoire.

Les sous-routines

La notion de sous-routines assembleur est très proche de celle utilisée en Basic. L'appel d'une sous-routine et son retour peuvent être conditionnel ou inconditionnel.
syntaxe code opératoire

APPEL
CALL adr CD VW XY
CALL Z, adr CC VW XY
CALL NZ, adr C4 VW XY
CALL C, adr DC VW XY
CALL NC, adr D4 VW XY
CALL M, adr FC VW XY
CALL P, adr F4 VW XY
CALL PE, adr EC VW XY
CALL PO, adr E4 VW XY
RETOUR

RET		C9
RET	Z	C8
RET	NZ	C0
RET	C	D8
RET	NC	D0
RET	M	F8
RET	P	F0
RET	PE	E8
RET	PO	E0

Lors de l'appel d'une sous-routine, l'adresse de retour est poussée dans la PILE, la plus grande prudence s'impose donc lors de la manipulation de la pile (PUSH POP).

EXERCICE

Si l'adresse ADR contient une constante N et l'adresse $\mathrm{ADR}+1$ contient une constante M , faite un programme qui appelle la sous-routine POSIT si $\mathrm{N}>\mathrm{M}$ et NEGAT si $\mathrm{N}<\mathrm{M}$ ou qui saute à l'adresse $\mathrm{ADR}+2$ si $\mathrm{N}=\mathrm{M}$.

En guise de conclusion provisoire

Les différentes notions vue jusqu'ici doivent vous permettre si pas d'écrire, au moins de comprendre les programmes simples écrits en assembleur.

Au cours de ces quelques pages, nous n'avons fait que découvrir le sommet de l'iceberg. Il reste encore un bon nombre d'instructions à étudier.
Pour bien programmer en assembleur, une bonne connaissance de l'EDITEUR/ASSEMBLEUR utilisé est indispensable.
Pour celui qui n'en possède pas encore et désire en faire l'acquisition prochainement, nous vous conseillons vivement l'achat du DEVPAC. En effet, il présente des caractéristiques exceptionnelles tout en étant d'une grande simplicité à utiliser.
Enfin, pour bien maittriser l'assembleur, une connaissance parfaite du logiciel interne de votre ordinateur est indispensable. A ce propos, les ouvrages de la
série "CLEFS POUR... " (PSI éditions) semblent particulièrement indiqués. les ouvrages intitulés « LE LIVRE DU... » (BCM éditions, PSI diffusion) vous fourniront tous les renseignements concernant l'architecture interne de votre machine accompagnés de nombreux exemples de programmes assembleur abondamment commentés.

SOLUTIONS DES EXERCICES

1) 79 LD A,C

48 LD C,B
47 LD B, A
2) 213 D 80 LD HL, 803 D

6E LD L, (HL)
$7 \mathrm{E} \quad$ LD A; (HL)
Au départ, 803 D contient 38.
Après LD L. (HL). L contient aussi 38. Le contenu de HL devient donc 8038. LD A, (HL) a pour effet de mettre dans A le contenu de l'adresse pointée par HL, c'est-à-dire le.contenu de l'adresse 8038 qui est 10 .
3) $210080 \mathrm{LD} \mathrm{HL}, 8000$
86 ADD A, (HL)
23 INC HL
86 ADD A, (HL)
23 INC HL
96 SUB (HL)
23 INC HL
77 LD (HL), A
4) $\mathrm{LD} H \mathrm{H}, \mathrm{ADR}$

LD A, (HL)
INC HL
CP (HL)
JP Z, ADR + 2
CALL NC, POSIT
CALL NEGAT

GROUPE DES UTILISATEURS MSX

CE QUE NOUS PROPOSONS

```
- Bulletins de liaison (nouvel-
les, trucs, astuces, program-
mes, conseils).
Envoyez-nous vos articles,
idées, découvertes, afin que
nous les fassions paraitre.
- Cours. Initiations BASIC.
Initiation, Assembleur.
- Echange de programmes.
- Création : programmes,
interfaces, périphériques,
robotique.
- Aide à la mise au point de
vos idées.
V8
```

Offre réservée
aux lecteurs de MSX MAGAZINE

- Groupage d'achats, réduction de prix sur matériels et logiciels.
- Local ouvert en permanence de 9 h à 19 h du lundi au vendredi, 12, rue Dupetit Thouars, 75003 Paris.
Tél. 48.87.61.53. M° Temple. (Cette liste n'est pas limitative, nous sommes prêts à étudier toutes vos sugges-28 tions).

BULLETIN DE DEMANDE D'ADHESION AU GROUPE DES UTILISATEURS MSX

Veuillez remplir ce bulletin et le retourner accompagné d'un chèque de 300 F au lieu de 350 F (conditions normales) libellé a l'ordre du GROUPE DES UTILISATEURS MSX, et d'une enveloppe timbrée à vos nom et adresse à MSX MAGAZINE, S5, av. Jean-Jaures 75019 PARIS Nom :

Prénom :
Adresse :
Teléphone
Machine(s) possédée(s) ou envisagée(s)

[^0]
$=T: R: U: C: S$ Eet $; A: S: T: U: C: E: S$

Adresses d'accès au synthétiseur Yamaha

Abstract

Dans le dossier "Musique" de MSX Magazine n° 2, Patrick Boujet vous parlait d'un petit programme qui "Renverrait l'état du clavier musical sur 9 octets". Vous serez certainement tous très contents de le trouver enfin, ci-après.

Nous avons vu comment obtenir les registres du clavier contenant l'état des touches des claviers YK 01 ou YK 10. Ces neuf octets correspondent aux touches du clavier de la manière suivante : Octet $\mathrm{n}^{\circ} 1$:

(Pour rappel, la notation musicale en lettre donne C pour Do, D pour ré, E pour mi, F pour fa, G pour sol, A pour la et B pour si, plus ou moins les dièses, bémols et bécarres). Le C du premier octet correspond à la note la plus haute (Do) c'est-àdire la plus à droite, puis viennent le Si , le La dièse et ainsi de suite en descendant
Octet $\mathrm{n}^{\circ} 2$

0	$\mathrm{~F}=\mathrm{FE}$	0	$\mathrm{D}=\mathrm{DC}=$

etc, jusqu'au neuvième octet :

0	C	0	0	0	0	0	0

qui ne contient que l'état du Do le plus bas pour le clavier à 49 touches, I'YK 10. Les informations du clavier sont donc codées sur 6 bits: 01110111 ou 77H. A partir de cela, il devient donc facile d'exploiter ces informations pour le synthétiseur, ou encore pour le générateur 3 voix du MSX, ou bien encore pour une utilisation non musicale qui reste à définir suivant son imagination.

Le synthétiseur

Nous allons aujourd'hui vous montrer comment y accéder, mais aussi comment allumer et éteindre une note. Il est bon de rappeler que les routines ici utilisées, se font bien entendu avec
le synthétiseur Yamaha (SFG ou SFK 01) mais aussi avec le logiciel YRM 104 Musique Macro, qui nous évite toutes les routines d'initialisations.
Les deux adresses permettant un acces direct au processeur de sons sont donc 3FF0 et 3FF1. En allant directement au but, le code machine de ce processeur permettant d'allumer une note comme de l'éteindre est 8 (nous utilisons ici des valeurs en notation hexadécimale). Ce code 8 sera appliqué à l'entrée de commande du synthétiseur 3FF0. N'oublions pas que nous disposons d'une polyphonie de huit notes, et donc que nous allons avoir 8 valeurs soit pour allumer soit pour éteindre ces notes. Les valeurs 0 à 7 éteignent les notes 1 à 8 , et les valeurs F 8 à FF allument ces mêmes notes.
3FF0-8
3FF1 - F8
ceci allumera la note 1 puis
3FFO - 8
3FF1
0
l'éteint.
Exemple dans un programme Basic
10 INIT : INST (1): PHRA (1, "c") : PLAY $(1,1)$
20 DATA F3, E3, 03, D3, A8, $3 \mathrm{~A}, 00, \mathrm{Cl}, 32, \mathrm{~F} 0,3 \mathrm{~F}, 3 \mathrm{~A}, 01$, C1, 32, F1, 3F, 3E, 00, D3, A8, FB, C9.
25 CLEAR, \& HBFFF
30, FOR I = 0 TO 22: READ AS:POKE\&HC000 + I, VAL ("\&H"+AS):NEXT:DEFUSR $=\& H C 000$
40 ZS :INKEY\$:IF $\quad Z S=\cdot \cdots$ THEN 40
50 POKE \&HC100, 8: POKE \&HC101, \&HF8
$60 \mathrm{X}=\mathrm{USR}(0): \mathrm{X}=\operatorname{SIN}$ ($\cos (1))$
70 POKE \&HC100,8 : POKE \& HC101, 0
$80 \mathrm{X}=$ USR (0)
90 END:'ou goto 40
La ligne 10 initialise le son $n^{\circ} 1$, et joue la note Do (c) afin que la vélocité soit appliquée au synthétiseur, car si elle était égale à 0 , nous n'entendrions rien. Les claviers YK 01 et YK 10 ne détectent pas la force d'appui sur les touches (en réalité la vitesse d'enfoncement) et le logiciel fixe une valeur moyenne. La ligne 20 représente la routine permettant d'accéder au synthétiseur tout en bloquant les interruptions.

Puis de 40 à 90 le programme va attendre que vous appuyez sur une touche pour allumer et éteindre la note 1.
Le $X=\sin (\cos (1))$, sert à générer un délai. Si nous voulons allumer toutes les notes, il ne faut pas oublier d'initialiser chaque son, et de modifier les codes pour chaque note de 0 à 7 et de F8 a FF.
Allumer ou éteindre une des huit notes n'a guère d'intérêt si nous ne pouvons pas changer sa hauteur. Huit codes sont destinés au changement de fréquence de
note. On utilise un codage simple qui fournit automatiquement les $1 / 2$ tons tempérés d'un instrument de musique.
L'octet se présente comme suit :

Les bits 0 à 3 déterminent la note et les bits 4 à 6 l'octave (étendue de huit octaves)
Les 12 notes chromatiques d'une gamme ne sont pas codés de 0 à 08 sur les 4 premiers bits mais de la manière suivante :

	00 -Do $04-\mathrm{Mi}$ 01 -Re $05-\mathrm{Fa}$ 02 -Re $06-\mathrm{Fa}$ $03-\mathrm{xx}$ $07-\mathrm{xx}$
chaque note : 28 H pour la note	
L'avantage du processeur	
Yamaha c'est qu'il ne nécessite	
pas de calculs complexes pour	
déterminer la fréquence d'une	

08	- Sol	$0 C$	-La
09	-Sol	0 D	-Si
0 A	-La	0 E	-Do
0 D	-xx	0 F	-xx

$x x$, non utilisé
Les notes sont présentées dans leur ordre logique, c'est-à-dire que 0 F représente en réalité le Do de l'octave suivante.

Patrick Boujet

Affichage 42 colonnes en mode Screen 2

Le mode Screen 2 (haute résolution) n'autorise à priori que l'affichage d'un texte en 32 colonnes. Notre truc très simple permet d'afficher 42 lettres sur une largeur d'écran : il suffit d'essayer le programme suivant.
chaîne de caractères. Notre truc décompose la chaîne en caracteres isolés qu'il aftiche tous les 6 pixels: donc $256 / 6$ donne 42 colonnes.
Mais attention, cela ne vaut que pour les caractères dessinés dans

```
```

0 'AFFICHAGE EN 42 COLONNES EN SCREEN }

```
```

0 'AFFICHAGE EN 42 COLONNES EN SCREEN }
10 COLOR 2,0,0:OPEN"GRP:"FOROUTPUTASH1:S
10 COLOR 2,0,0:OPEN"GRP:"FOROUTPUTASH1:S
CREEN2
CREEN2
20 As-"abodelghljklmnopqr'stuUWxyz123450?
20 As-"abodelghljklmnopqr'stuUWxyz123450?
890ABCDEF"':XO=3:YO=80:GOSUB100
890ABCDEF"':XO=3:YO=80:GOSUB100
30 A$="GHIJKLMNOPQRSTLWXYZ!eas%z*()\rangle\langle人,
30 A$="GHIJKLMNOPQRSTLWXYZ!eas%z*()\rangle\langle人,
:;":XO=7:Y0=118:GOSUB100
:;":XO=7:Y0=118:GOSUB100
40 LINE (0, 0)-(255,191)
40 LINE (0, 0)-(255,191)
50 Ws=INPUTS (1) :END
50 Ws=INPUTS (1) :END
99 'AS EST LA CHAINE A AFFICHER;XO ET YE
99 'AS EST LA CHAINE A AFFICHER;XO ET YE
SONT LES COOORDONNEES OU POINT OU
SONT LES COOORDONNEES OU POINT OU
COMMENCE L'AFFICHAGE
COMMENCE L'AFFICHAGE
10E FORA = / TOLEN(AS)
10E FORA = / TOLEN(AS)
110 B*=MID\&(AS,A,1):X1=X0+CE* (A-1))
110 B*=MID\&(AS,A,1):X1=X0+CE* (A-1))
120 DRAW"BM=X1; =YO;":PRINTH1,Bs
120 DRAW"BM=X1; =YO;":PRINTH1,Bs
138 NEXTA
138 NEXTA
148 RETURN

```
```

148 RETURN

```
```

L'explication est simple : l'affichage est possible a chaque position de pixel en Screen 2, alors qu'il se fait tous les 6 pixels en zgeen 0 et tous les 8 pixels en Screen I. Spontanement le mode Screen 2 affiche une lettre tous tes 8 pixels quand il s'agit d'une
une matrice de 6 sur 8 et puis it faut faire attention a ne pas modiffer les coulcurs pour mains de 4 caracteres (sinon cela "bave" : les couleurs sant idontiques poar 8 colonnes de pixels: $1 \times 8=4 \times 0$.

Dexi. Ariser
pirels; $1 \times 8=4 \times 01$

$$
30
$$

TOUT SUR LE MSK

SE TROUVE CHEZ

L U
 T
 I

ORDINATEURS,

LOGICIELS D'APPLICATION, LANGAGES, JEUX, PÉRIPHÉRIQUES, ACCESSOIRES ET FOURNITURES

DISTRIBUTION - VENTE DIRECTE

LUTEC FRANCE S.A.

 58, RUE DE ROME - 75008 PARIS TÉL.: (1) 522.92.90 + - TÉLEX: 648604 LUTEC TÉLÉCOPIEUR (FAX) : (1) 522.15.82 MÉTRO ${ }^{30}$: EUROPEReposez vos pauvres petites menottes. MSX Magazine a dupliqué les programmes de ce numéro sur cassette. Cette cassette est à votre disposition pour la somme modique de 68 F. 58 F réservé aux abonnés Europe : 90 FF. Airmail : 108 FF .

16
trouve de programmes couvrant tous les domaines d'applications: ludique, domestique, personnel, scientifique, plus on a de chance d'assister à une réussite. Or le MSX n'était peut-être pas accompagné d'un choix de logiciels suffisamment vaste à ses débuts. Ce qui n'est absolument plus le cas maintenant. Tous les éditeurs ont des logiciels pour MSX à leurs catalogues. Du traitement de texte au classique jeu d'arcade. Si le produit est cher, il faut chercher les causes réelles. Il est imbécile d'accuser les importateurs ou les distributeurs. Mais l'évidence et l'expérience prouverait qu'un produit de qualité, doté d'une logithèque importante et d'un prix bas, a toute les chances de marcher. C'est ce que je souhaite au MSX. Malgré tout, sachez que les Japonais sont très contents des résultats des ventes è l'étranger, car cela dépasse leurs prévisions. M.M. : Beaucoup de gens nous conseillent d'éviter de parler du MSX-2, parce qu'il tuerait, parait-il le MSX-1. Qu'en pensez-vous ?
D. R. : C'est franchement ridicule ! Le MSX-1 sera parfaitement compatible avec le MSX-2. Comme je vous le disais, les Japonais visent le futur. Les matériels seront compatibles entre eux, ASCII Corporation prépare une interface qui permettra de transformer un MSX-1 en version MSX-2, Ce dernier n'est pas un remplaçant, mais un produit haut de gamme. On trouvera un
eventail de machme aussi vaste que pour le modèle 1.
M.M. : On parle déjà du MSX-3. Avezvous des informations précises sur cette nouvelle version ?
D.R. : Non, mais de toute façon rien n'est encore arrêté sur le plan technique. Le MSX-3 n'existe pas, toutefois pour le moment. On peut envisager qu'il coexistera deux processeurs pour d'une part, assurer la compatibilité avec les autres versions et d'autre part, permettre l'évolution des machines vers les techniques d'avenir.
M.M. : Vous avez créé une société : Vidéo-Logiciels-Systèmes et Interfaces (V.L.S.I.). Celle-ci édite des logiciels pour MSX. Votre société ne profite-telle pas du fait que vous soyez le président du groupe MSX?
D.R. : Ce que vous dites est très drôle ! Le groupe m'a plutôt coûté beaucoup d'argent. C'est une association de type " 1901 \%. Par contre j'avoue que j'ai d'excellents contacts avec les distributeurs ou les constructeurs, qu'ils soient Européens ou Japonais. Il est évident que beaucoup me connaissent comme étant, entre autre, le president dut groupe. Mais je n'ai lamais fait valoir cette qualité lorsque je me presente au nom de V.L.S.I., aupres d'une personne que je rencontre pont la premiere fois dans un contexte pro3ksionnel
M.M. : Yous développez des logiciels sur des machines directement concurentes des MSX: les CPC Amstrad.

N'avez-ious pas limpression de - trahir » le monde du MSX, ou pensez-vous que le MSX n'est pas une aussi bonne machine que cela ?
D.R. : V.L.S.I. est une entreprise commerciale, qui développe des logiciels pour différentes machines. Si nous avons des produits pour MSX, nous en avons également pour d'autres marques. C'est le cas pour les micros Ams trad. Je ne pense pas trahir pour cela le MSX.

La société V.L.S.I. a développee ur DR. BASIC \& MR. BUG \%, un deboggeur Basic pour MSX qui est commercialise pour moins de 200 F . Elle a egalement mis au point un langage : le LPB. Ce dernier permet de travaller avec le langage Basic comme avec un assembleur. On peut ecrire un programme avec la syntave Basic, en utilisant dans ce mitme programme des codes assembleur, le tout étant transformé en code machine grace au complareur co-resident. On obtient ainsi la puissance de l'assem: bleur avec le Basic. Le LPB devrait anteresser tous ceux qui souhaitent travailler avec l'assembleur, mais sally l'apprendre.

Grospe des whilastowny M/SI 12, ne Dape tit Thowars, rsous Pers. Tel. of 48, 87.ef, 5
V.L.S.I. indme adresere Tof. © I1 42. T3 50.00.

Probir Mos min ter

Pitman

Liste des variables utilisées ：
Ligne 290 ：Z，W，Y $=$ coordonnées et largeur des échelles．
Ligne 370： $\mathrm{X}, \mathrm{Y}=$ coordonnées des sacs．
Ligne 410 ：$K=$ coordonnées horizon－ tales du $1^{\text {er }}$ wagonnet
$\mathrm{X}, \mathrm{Y}=$ coordonnées du mineur
$Z=$ vitesse du 2^{e} wagonnet
15 DFEN＂GRF：＂FURUUTPUTAS\＃1
2 GOSUE1220：COLOR $6,11,2: C=4$ ：SCREEN2
35 DRAW＂EM4，4D36R23D16L16J3L12D16R28D32L 24D64R16U8L8U8R16D24L24D16R240U16L24U16R 15リ8R8U16L16D16L24U8R16U64R16D40L8D8R16U 56L24U24R28U28L248＂
45 PAINT（ 1,1 ）
5 5 DRAW＂EH40，46R48D24L48UBR4NU8L4日U8＂
65 PAINT $(41,41$ ）
70 DRAW＂BM96，4勾45D24L4日U8R32U8L32UE＂
85 PAINT $(9 ?, 41)$
95 DRAW＂EM144，40R24D8日LT2U40R16D32R4日リEL 32U24F40U16L16U24＂
195 FAINT $(145,41)$
110 DRAW＂EM17E，40R40DSL32D40R8U32RSD40L2 $4056^{\prime \prime}$
124 PAINT（177，41）
130 DRAW＂BM2日8，56R8D64L8U64＂
149 PGINT（ 259,57 ）
150 DRAW＂EM176，126R24U16L24D16＂
160 FAINT（177，105）
170 DRAW＂EM2ムロ，128D8L56U8R56＂
180 PAINT（ 199,129 ）
195 DRGW＂BM136，128D8L32D8R32D8L88D8R38D8
L96U24R56U16R40＂
250 FHINT（ 135,129 ）
210 DRAW＂EM144，144RT2D8L64D8R64D3L？2U24＂
225 FAINT（145，145）
230 DRAW＂EM40，136R48U56L48D16R40D32L40D8
240 PGINT $(41,135)$
250 DRAM＂EM4日，129R32U16L32D16＂
26 हि PAINT（41，119）
279 DRAW＂EM32，136L16U16R8U8L8U8R16D32＂
280 PAINT（31，135）
290 FORF $=1$ TO14：READZ，W，Y
300 FURN $=1$ TOZ
310 SOUND7，255－1：SOUNDD，7＊N：SOUNDS，10：SO
UND1， 4
$320 \operatorname{PSET}(W+3, Y)$ ， 0
330 DRAW＂C6D4L3R3D4L3R4U3R3L3U4R3L3U1＂
$340 \quad Y=Y+8$ ：NEXT ：NEXT ：RESTORE 1110
350 FURN $=1$ TOS：FURF $=1$ TOS：READ $25: X=X s+C H R^{3} 2$
 NEXT

Explications
 de fonctionnement

1 ：Taper＂RUN＂，puis la présentation achevée，appuyer sur une touche．
2 ：Taper 0 ou 1 （clavier ou manette）． Le but du jeu est de ramasser tous les sacs et de les ramener avec la brouette． On ne peut prendre qu＇un seul sac à la fois，ceci en appuyant sur la barre d＇espace ou sur le bouton du joystick． On éxécute la même opération pour déposer un sac．
Attention ：il faut éviter d＇entrer en col－ lision avec le monstre．Les wagonnets ne vous transportent pas，ils tuent！

L．et E．Itti
＂bravo＂．
Ligne 1490：CM＝clavier ou manette
$Y B=$ coordonnées verticales $d u$ monstre．
Ligne 850： $\mathrm{V}, \mathrm{W}=$ coordonnées des sacs．
Ligne 940 ：Sc $=$ score
Ligne 1400：Col＝couleur du bord
Ligne 1500： $\mathrm{X}, \mathrm{F}=$ coordonnées des

З6и RESTURE120日
37 G FORF＝12TU31：READX，＇ $\mathrm{F}:$ FUTSFRITEF，(X, Y)
，13，1：BEEF：FURWF $=1$ TO3
389 PUTSPRITEG，$(50,31), 1,2$
39 FUTSFRITET，$(58,31), 1,3$
400 DRAW＂BM16，16＂：FRINT\＃1，＂SCORE：＂
41 is $K=32: L=8: Y=8: Y=31: Y I E=3: Z=6: S=-4: Y E=$
32
$42 \bar{n}$ FUTSFRITE8，（258，16），4， 4
430 FUTSFRITES ，$(216,16), 4,4$
44 घ FURF＝̄TŪ13：SUUNDF，घं：NEXT
45 घ PUTSPRITES ，$(X, Y),(, 4$
$460 \mathrm{~A}=5 \mathrm{TICK}(\mathrm{CM})$
475 IFA $=1$ THENGOSUB6E日
480 IF $=5$ THENGUSUB7可
490 IFA $=$ ？THENGOSUB？ 30
5й IFA＝ЗTHENGUSUE？Sも
$51 \overline{0} \quad A=S T R I G 6 C M)$
529 IFA $=-1$ THENGUSUB830
530 FUTSFRITE1，（K，71），1，5
S40 FUTSFRITE2，$(K+8,71), 1,6$
55 D PUTSFRITE $3,(J, 175), 1,5$
560 PUTSFRITE4，$(\mathrm{J}+8,175), 1,6$
5 TG FUTSPRITE11，$(32, Y \mathrm{~B}+12), 1,3$
580 PUTSPR1TE1日，（32，YB＋12），？，？
$595 \mathrm{~K}=\mathrm{K}+Z$ ：IFK $\rangle=144 \mathrm{~T} \mathrm{HENZ}=-6 E L$ SEIFK $\langle 33$ THEN $z=6$
6 日月 $\mathrm{J}=\mathrm{J}+\mathrm{S}:$ IF $J\rangle=23$ THENS $=-6 E L S E I F J\langle 9$ THENS $=6$
$618 \quad Y B=Y E+Z$
620 IF $K=32 A N D Y=\langle Y B+16 A N D Y\rangle=Y B+8 T H E N G O S U B$ 156 B
$634 \mathrm{IFY}\langle$ TLANDY $\langle 75$ ANDY $\langle>1$ T5THEN 450
640 IFX〉KANDX〈K＋8ANDY〉TDANDY〈TGORX〉JANDX
$\langle J+8$ AND $Y=1$ T5THENGOSUE156日
65 EU GUTO 45 E
$660 \quad Y=Y-4$
$670 Q=F O I N T(X+7, Y+5): \operatorname{IFQ}=F O I N T(X+1, Y+5) A$ $N D Q=6 T H E N Y=Y+4$
680 IFPOINT $(\gamma+4, y+12)=11$ THENY $=\gamma+4$
690 RETURN
$700 \quad Y=Y+4$
$710 \mathrm{Q}=\mathrm{FOINT}(X+7, Y+B) \cdot I F Q=P O I N T(X, Y+8) \mathrm{AND}$ $Q=6$ THENY $=Y-4$ 120 RETURN
$730 \quad x=x-4$
$T 4 \theta Q=F 01 N T(X+1, Y): I F Q=P O I N T(X+1, Y+8)$ AND $0=6$ THENX $=X+4$
750 IFPOINT $(X+4, y+10)=11$ THEN $X=x+4$
TOO IFPOINT $(X+1, Y+8)=6$ THEN $X=X+4$
770 RETURN
$780 \quad X=x+4$
$790 Q=F 0 \operatorname{INT}(x+5, \psi): \operatorname{IFQ}=\mathrm{POINT}(x+5, \gamma+8) \mathrm{AND}$ $Q=6 T H E N X=X-4$
800 IFFOINT $(x+4, \gamma+\eta)=11$ THEN $X=x-4$
810 IFPOINT $(X+5, Y+8)=6$ THENX $=X-4$
820 RETURN
830 RESTORE 1200
$840 \mathrm{FORF}=1 \mathrm{TO} 20$
850 READV，W
860 IFX〈U＋5ANDX〉U－5ANDY＝WTHEN890
870 NEXT
880 IF $X>50 \mathrm{ANDX}\langle 64$ ANDY $=31$ THEN1日日ロELSERETU
FN
890 IFC＝ 13 THENRETURN
$9 \bar{\square} \mathrm{C} C=13$
910 SOUND 7， 251 ：SOUND13，3：SOUND3，1：SOUND2 1：SUUND4， 2 ：SOUND 5， 1 ：SOUND 19， 16 ：SOUND9， 1 6．SUUND12， 255
$920 \operatorname{LINE}(64,16)-(1515,24), 11, \mathrm{BF}$
9४も DRAW＂EM64，16＂
$940 \mathrm{SC}=5 \mathrm{C}+1$ 易
950 FRINT\＃1，SC
960 RESTDRE1200
979 FURF＝ 1 TD $28: R E A D Q, R: I F X\langle Q+5 A N D X\rangle Q-5 A N$ $D R=Y$ THEN 38 SELSENEXT
980 PUTSFR 1 TEF +11 ，（ $\overline{1}, 0)$
990 RETURN
150̆ IFCく〉13THENRETUFN
$1010 \mathrm{C}=4$
$1020 \mathrm{SC}=5 \mathrm{C}+10$
$1530 \operatorname{LINE}(64,16)-(105,24), 11$, EF
1 1540 DRAW＂BM64，16＂
1550 PRINT\＃1，SC
1069 SOUNL13， 15 ：SOUND 3， 10 ：SOUND2， 1 ：SUUND 4,2 ：SOUND 5， 1 ：SOUND 15， 16 ：SUUNDY， 16 ：SOUND1 2． 10
1月TИ IFSC $=4$ ИुTHENGUTO150日
1 158 RETURN
1490 DATA18，32，40，8，8，76，4，72，96，13，88，4 $0,4,112,86,5,136,44,7,136,128,5,184,48,1$ $2,206,48,12,216,40,5,216,144,3,232,128, ?$ $, 245,64,11,168,40$
1100
1110 LATA $2 \mathrm{C}, 18,3 \mathrm{C}, 66, F 7, F 7,76,3 \mathrm{C}$
1120 DATA घ日，日ら，$+f, 9+, 97,93,02$, घ 2
1130 DATA घू，00，$f+,+e,+0$, Te，ge，ge
1140 DATA $\varphi \dot{\varphi}, 18,18, T \mathrm{TE}, 18,30,24,66$
1150 DATA G鸟，50，55，FF，TF，3F，3F，3C
1160 DATA 09,50, 日घ，FF，FE，FC，F8， 38
1170 DATA $2 C, 3 E, 6 E, F F, E 3, F E, F 7,66$
1180 DATA $0 \overline{0}, ⿹ 勹 匕, 14, \overline{0}, 1 D, 00,00,00$
1190
$129 \bar{U}$ DATA8，55，72，47，125，47，192，47，184，79
$, 184,95,232,111,246,135,144,103,160,135$,
$48,151,155,151,16,151,16,95,64,95,99,175$ $, 200,175,100,71,60,71,148,71$
1210
1220 COLUR $1,12,1$ SCREEN 2
1239 DRAW＂EM64，16M104，25D12M68，491444，112 L12M64，16＂
124 日 DRAW＂EMT2，24R16D4M72，32U8＂
1250 PAINT（65，17）
1260 DRAW＂EM92，8R8M99，16L8M92，8＂
1270 FAINT $(93,9)$
1280 DRAW＂BM88，48R8M88，112L81488，48＂
1290 PAINT（89，49）
1300 DRAW＂EM112，8R8M119，32R121D8L122M112 ，112L8M112，8＂
1310 FAINT $(113,9)$
1320 DRAW＂EM128，48R8F8EBR8M164，112L8M152 5668H8D56L8U64＂
1330 PAINT（129，49）
1340 DRAW＂EM176，48R8M200，112L8M184，88M1？
6，112L8M176，48BM184，64L4D8R4U8＂
1350 PAINT（177，49）
136 D DRAW＂BM2日0，48R8M232，88M224，48R8M248
112L8M236， $96 M 212$, T2M216，112L8M25日， $48^{\prime \prime}$
1370 FAINT（201，49）
1380 DRAW＂EM20，170＂
1390 PRINT\＃1，＂COPYRIGHT BY E．\＆L．ITTI＂
1490 COL＝2
141 G COLOR1，12，COL
1420 FORF $=1$ TU20：NEXT
$1430 \mathrm{COL}=\mathrm{COL}+1$ ：IFCOL＝15THENCOL＝1
1440 IFINKEY $\$\rangle$＂＂THEN146日
1450 GOTO 1410
1460 SCREENO ：COLOR15，4：SCREEN2
1470 DRAN＂bm30，50＂
1480 PRINT\＃1，＂Voulez－vous jouer aveo le olavier ou avec la mariette？

Clavier 1：Manette

＂THENCM＝VAL（A\＄）：RETURN ELSEG0T01490
$1500 \quad X=8: F O R F=0$ TU190STEF10
151 घ́ LINE（ $F-4, X-2)-(F+68, X+8), 11, B F$
1520 PSET (F, X) ，θ
153 U CULOR15，11， 2
1540 FRINT\＃1，＂bravo ！！＂
1550 EEEP：$X=X+8$ ：NEXT：RUN
156 日 VIE＝UIE－1：IFUIE＝0THENGOSUR 15 T0 RUNE
LSE PUTSPRITET＋VIE，$(0,0)$
$157 \bar{\square}$ FORF $=$ OTO25 OSTEPS
1580 SOUNDT， 254 ：SOUNDO，F：SOUND1， $0:$ SOUND ， 10
1590 FORR $=1$ TO30 ：NEXT
1600 NEXT
1610 BEEP：BEEP
1620 IFYB＜45THENY $B=Y B+12 E L S E Y B=4 B-12$
3330 RETURN
2000 CSAVE＂PITMAN＂，1 GOTO 2000

Taquin

Qui n'a jamais joué, au moins un jour, au taquin de lettres? L'inconvénient de ces jeux d'enfants est qu'après quelque temps on perdait des lettres ou bien elles se coinçaient. Et puis, il était lassant de mélanger les lettres. Mais l'inconvénient de taquins sur ordinateur est qu'ils ne sont pas pratiques à l'usage. Autant de défauts auxquels nous avons remédié. Notre petit jeu affiche des lettres dans l'ordre à reconstituer :

* A B CDEF

GHIJKLM
NOPQRST

U V W X Y Z

Et très vite, vous le verrez agiter les lettres dans un désordre de plus en plus accentué.
Appuyez alors sur une touche quelconque et commencez à jouer : déplacez le curseur avec les flèches et tapez sur la barre espace. Si le curseur se situe sur une lettre contigue au trou, la lettre en question sera mise à la place du trou. Cela va très vite.
Lorsque vous estimerez avoir reconstitué l'ordre initial (EXACT y compris l'espace), appuyez sur "SELECT". Le programme vérifiera si c'est exact et vous dira le temps que vous avez mis : moins de cinq minutes vous approchez du record...

Analyse de listage

10 Initialisation. En 8000 , le chrono est incrémenté tous les $49 / 50^{\circ}$ de seconde. 20 Lecture des lettres en 5000 . Suite de l'initialisation.
30-120 Mélangeons les lettres.
30 Attente de l'appui sur une touche. 40 HA Définit le sens du déplacement. 50-80 Eliminons les mouvements qui annulent le précédent.
90 Selon HA déplacement en bas, haut, droite, gauche (en 2000-2340).
100 Mémorisons le dernier mouvement réalisé.
110 Affichage du trou.
120 Pas de touche enfoncée : retour en 30.

130 Effacement de la consigne. Affichage d'une autre consigne en 9000 au $l^{\text {er }}$ essai.
140-150 Musique. C'est prêt.
160 Plaçons le curseur et lançons le chronomètre.

200-580 Jeu proprement dit.
200 Une boucle INKEY \$ tourne entre 200 et 290 : si appui sur SELECT, vérification de la qualité de la disposition en 7000 . Si c'est bon I3 vaut 1 et on passe en 500.
210 Si l'on appuie sur la barre-espace, allons voir en $1000-1500$ s'il existe un espace à droite ou à gauche ou en bas ou en haut du curseur : dans chacun des cas, on inverse lettre et espace.
220-280 Déplacement du curseur.
290 Attente variable selon que l'on emploie le clavier ou les joysticks (pour ceux qui ont modifié en 10).
500 - 580 Affichage du temps, comparaison au record et proposition d'un nouveau jeu.

Les routines :

1000-1500 Inversion entre espace et lettre et inversion de leur index en fonction du hasard.
2000-2 340 Y a-t-il un espace à côté du curseur? Si oui, inversion.
5000 - 5200 Calcul des coordonnées d'affichage. On constitue un tableau des index (en fait, des codes ASCII).
En 5090-5 100, les index des bords sont mis à 0 .
En modifiant la taille du tableau et les DATA en 6000 on peut modifier tout le jeu.
$7000-7050$ est-ce le tableau initial ? Si non 13 est mis à 1 .

Denis Krieger

```
0 , "TAQUIN" PAR D.KT ieget
10 COLOR 2,0,0:CLEAR 500:DEFINT A-Y :DIM
    X(8,5),Y(8,5),A$(8,5):SCREEN 1:WIDTH31:
HA=RND(-TIME):KEYOFF: S=0 :ON INTERUAL=4
9 GOSUB 8000
20 GDSUB 5000: E=7:F=4:LOCATE 0, 20,0:PRI
NT"APPUYEZ SUR UNE TOUCHE":PRINT"QUANDU
OUS UOUDREZ JOUER":INTERUAL OFF
30 W$=INKEY$
40 HA=1+INT(4*RND(1)):I }|=
5 0 \text { IF HA=1 AND H1=2 THEN 40}
6 0 \text { IF HA=2 AND H1=1 THEN 40}
7 0 \text { IF HA=3 AND H1=4 THEN } 4 0
80 IF HA=4 AND H1=3 THEN }4
90 ON HA GOSUB 2000, 2100, 2200, 2300
1 0 0 H 1 = H A : I F ~ I O = 1 ~ T H E N ~ 4 0 ,
110 LOCATE X(E,F),Y(E,F):PRINT" "
120 IF W$="" THEN 30
130 LOCATE 0,20,0:PRINTSPC(60):1F 15=0 T
HEN GOSUB 9008
140 PLAY'"L12N36RN48*
150 1F PLAY(B)=-1 THEN 150
160 LOCATE X(E,F),Y(E,F),1:INTERUAL ON:Z
34
200 W$=INKEY4:IF W$=CHRS(24) THEN 13=0:G
```

OSUB 7000：IF $13=1$ THEN PLAY＂LI2NIN12＂EL SE 500
210．IF STRIG（S）＝－1 THEN GOSUB 1DOD
$220 z=S T I C K(S): I F \quad z=0$ THEN 200
230 IF $F>1$ TIIEN $+-F+(7=1)$
240 IF $F<4$ THEN $F=F-(z=5)$
250 IF $E>1$ THEN $E=E+(z=7)$
260 IF $E<>$ THEN $E=E-(z=3)$
270 LOCATE $X(E, F), Y(E, F), \varnothing: P R I N T C H R \$(I N($ E，F）J ；
280 LOCATE $X(E, F), Y(E, F), 1$
$290 \mathrm{TT}=1-(\mathrm{S}=1$ OR $\mathrm{S}=2): F O R \quad W W=1$ TO TT＊100 ：NEXT WW：GOTO 200
500 PLAY＂L12N36N38N40N4 1 N40N38N36N36＂：Z $M=I N T(Z I / 60): ~ Z S=Z I-(Z M * 60)$
510 LOCATE 0，14，1：PRINT＂BRAUO ！＂：PRINT：P RINT＂TROUUE EN＂；ZM；＂MIN＂；ZS；＂SEC．＂：IF I5 $=$（0）THEN RE＝ Z I ：I $5=1$
520 IF ZI＜RE THEN PRINT：PRINT＂RECORD BAT TU＂：RE＝Z I
530 PRINT：PRINT＂ENCORE UN JEU O／N ？＂； $540 \mathrm{~W} \$=I N K E Y \$$
550 IFW $\$=$＂。＂ORW $\$={ }^{\circ} 0$＂THEN CLS：GOTO20
560 IF $W \$=" N " O R \quad W \$=" n " T H E N P R I N T: P R I N T " A U$ REUOIR＂：END
570 EE＝RND（1）：GOTO 540
1900 IF IN（E－1，F）＝32 THEN LOCATE $X(E, F)$ ，
$Y(E, F), \square: P R I N T$＂＂：LOCATE $X(E-1, F), Y(E-1$ ，
$F): P R I N T C H R \$(I N(E, F)): I N(E-1, F)=I N(E, F)$ $: I N(E, F)=32$
1010 IF IN（E，1，F）$=32$ THEN I DCATE $X(E, F)$ ，
$Y(E, F)$ ，ด：PRINT＂＂：I OCATE X（E＋1，F），Y（E＋1，
F）：PRINTCHR\＄（IN（E，F））：IN（E＋1，r）＝IN（E，F）
$: I N(E, F)=32$
1020 IF IN（E，F＋1）＝32 THEN LOCATE $X(E, F)$ ， $Y(E, F), \varnothing: P R I N T " \quad ": L O C A T E \times(E, F+1), Y(E, F+$ 1）：PRINTCHR\＄（IN（E，F））：IN（E，F＋1）＝IN（E，F） $: I N(E, F)=32$
1030 IF IN（E，F－1）＝32 THEN LOLATE $X(E, F)$ ， $Y(E, F), \varnothing:$ PRINT＂＂：IOCATE $X(E, F-1), Y(E, F-$ 1）：PRINTCHR\＄（IN（E，F））：IN（E，F－1）－IN（E，F） $: I N(E, F)=32$
JAAG LOCATE $X(E, F), Y(E, F), 1: R E$ TURN
2月6G IF IN（E－1，F）－G IIEN RETIIRN
2月1の 1 ローム
 1f 1 ：FRINTCHRF（ IN（E，F））
つめ3日 $1 N(E-1 . F)=32: E=E=1$
291H PETIIPN
214日 IF IN（E＋1，F）A IHEN P1，1H1FN
2111 1a a

2130 IN $(E+1, F)=32: E=E+1$
2140 RETURN
2200 IF $I N(E, F+1)=0$ THEN RETURN
2210 10＝0
$2220 \operatorname{IN}(E, F)=\operatorname{IN}(E, F+1): \operatorname{LOCATE} \times(E, F), Y(E$
，$F)$ ：PRINTCHR\＄（IN（E，F））
2230 IN $(E, F+1)=32: F=F+1$
2240 RETURN
2300 IF IN $(E, F-1)=0$ THEN RETURN
2310 10＝0
2320 IN（E，F）＝IN（E，F－1）：LOCATE $X(E, F), Y(E$
，F）：PRINTCHR\＄（IN（E，F））
2330 IN $(E, F-1)=32: F=F-1$
2340 RETURN
5000 RESTORE $6000: F O R \quad B=1$ TO 4
5010 FOR $A=1$ TO 7
$5020 \times(A, B)=5+(2 * A)$
$5030 Y(A, B)=3+(2 * B)$
5040 READ $A \$(A, B)$
$5050 \operatorname{IN}(A, B)=A S C(A \$(A, B))$
5060 LDCATE $X(A, B), Y(A, R), \theta: P R I N T A S(A, B)$
$507 \square$ NEXT A
5080 NEXT B
5090 FOR $A=1$ T0 7：$I N(A, \theta)=0: I N(A, 5)=0$ ： NEXTA
5100 FOR $B=1$ TO $5: 1 N(0, B)=ด: I N(8, B)=\theta:$ NEXT B
5110 LOCATE 日，16，1：PRINT＂UOICI LE TAQUIN
QU＇IL FAIIDRA RECONSTITUER＇：PRINT＂SI U
OUS PENSER AUOIR RELISSI TAPEZ＊SELE CT＊
5120 PRINT＂APPLIYEZ SUR UNE TOUCHE POUR LA SUITE＂；
5130 W\＄＝1NKEY\＄：IF W\＄〈〉＂＂GOIO 5130
$5140 \mathrm{~W} \$=I N K E Y \$: 1 F \quad W \$=\cdot \prime$ THEN 5140 ELSE L OCATE $0,16,0:$ PRINTSPC（18ด）；：RETURN
Gดดด DATA＊，$\cap, B, \Gamma, \Pi, E, F, G, H, 1,1, K, L, M, N, \cap$ $, P, Q, R, S, T, U, U, W, X, Y, Z, \cdots \cdot$
フดดด FOR $A=1$ in 7
701日 FOR $B=1$ T0 4
7020 IF $A \$(A, B) \ll C H R \$(I N(A, B))$ THEN $13=1$
2030 NEXT B
フロ4ด NEXT A
20Se RETURN
BGA日 RI \rightarrow［1］：RE TIIRN
 IIR AUEC IES FLECHES STP I A LEITRE A LIPPI A CER LI TAPL StiR I A

BA
KKL ESPACE＊
GクIA HRINT＇FRMPPL R RE IHRN HUL IN JOUER＂：

$=L_{i I T: S: T: I: I: N: G: S ~}^{\text {in }}$

Thésée

Un petit bonhomme nommé Thésée descend dans un labyrinthe en évitant deux vampires, dix trappes qui s'ouvrent ou surgissent aléatoirement (mais à intervalles réguliers). En appuyant sur la gachette il doit tuer le Minotaure qui disparaît alors. Des cartes viennent enfin se placer en travers de son chemin, il doit les abattre et peut ensuite tenter la lente remontée vers la surface. Lorsqu'il arrive à son point de départ, son temps et ses records s'affichent.
M. Garric

```
10' GARFIC Jacques,_3317% GRADIGNAN
20. MSX-CANONG4K
3(6) KEYDFF
46) CLS: SCREEN1: COLOF10, 4,1:VFOKEBASE (6) +2, 9*16:VFOKEBASE (6) +3,9*16
50) LOCATEB, S:PRINT" }\mp@subsup{\square}{}{\prime\prime
60 LOCATE8,4:PRINT"।
70 LOCATE8,5: PRINT" "
8\emptyset LOCATE9, 4:FRINT"*THESEE"
90. LOCATE1, 8: PRINT"Fourrez vous éviter les vam-pires et déjouer les pieges afin
    de tuer le minotaure quiest au bout du labyrinthe? Parviendrez vous a regagne
r alors la sortie?
95 FRINT"Et n'oubliez pas de tirer vos cartes en chemin..."
100. PRINT"Ne dites pas que cette épreu-ve est aisee! (hum!)"
110 LOCATE3, 20: FRINT"PRESSEZ UNE TOUCHE"
120 C $=INPUT$ (1)
130 CLS: FEM: INITIALISATION
140 DIMX1 (12), X2(12),Y1(12),Y2(12):DEFINTA-L:CL=9
150 COLOR 14, 4: RC=500
160 ON INTERVAL=200 GOSUB1890
17@ SCREEN2, \emptyset: FX=3:PT=3: CC=\emptyset
180 ON SPRITE GOSUB187\emptyset
190 ONSTRIGGOSUB, 201%
200 REM: TRACE DU LABYRINTHE
216 RESTURE
220. FOR I=1TO4S
230 IFI<33THENZX=0:ZY=-2ELSEZX=-2:ZY=0
240 READX , Y1, X2, Y2
250}\operatorname{LINE}(X1*16+10,Y1*16-1)-(X2*16+16+ZX,Y2*16+2Y-1),CL,B

\section*{}

\section*{265 NEXTI}

27Ø DATA日， \(1,1,1,2,1,15,1,6,2,5,2,6,2,7,2,8,2,10,2,11,2,14,2,0,3,1,3,2,3,11,3,13\) ， \(3,15,3,1,4,4,4,5,4,8,4,9,4,14,4,0,5,11,5,12,5,15,5,1,6,6,6,7,6,1,, 6,11,6,15,6\)
280 DATA \(, 7,2,7,4,7,11,7,12,7,15,7,6,8,1,8,2,8,8,8,9,8,14,8,6,9,3,9,4,7,13,9,14\) ． \(9,15,9,2,10,6,10,7,10,7,10,10,10,15,10,1,11,12,11,13,11,15,11,6,12,15,12\)
290 DATAด， \(1, \emptyset, 12,1,10,1,11,2,3,2,4,2,9,2,10,7,5,7,6,3,6,3,8,6,4,6,5,6,8,6,5,8,1\) ， \(8,2,8,10,8,11,10,7,10,10,12,2,12,4,15,1,15,12\)
360 REM：FORTES VARIABLES
310 DATAT，1， \(7,2,10,3,10,4\)
320 DATA13， \(1,13,2,11,4,11,5\)
330 DATA4，10，4，11，11，10，11， 11
340 DATA10， \(7,10,8,11,8,11,9\)
350 DATA9， \(6,9,7,5,7,5,8\)
36＠FEM：TIRAGE AU SORT DES PORTES
376 FORI \(=1\) TOS
380 FORJ \(=1\) TO2
390 READX1（J），Y1（J），X2（J），Y2（J）
400 NEXTJ
\(410 \mathrm{H}=\) INT（ \(\mathrm{RND}(-\) TIME \() * 2+1)\)
\(420 X_{1}=X 1(H): Y 1=Y 1(H): X 2=X 2(H): Y 2=Y 2(H)\)
\(430 \operatorname{LINE}(X 1 * 16+16, Y 1 * 16-1)-(X 2 * 16+16+Z X, Y 2 * 16+Z Y-1), C L, B F\)
440 NEXTI
450 REM：TRAPFES，EMPLACEMENTS
460 DATA47， \(33,57,44,167,33,177,44,87,49,97,66,47,65,57,76,87,81,97,92,167,97,177\) ， 108
470 DATA207，113，217，124，47，129，57，146，127，145，137，156，167，161，177，172
480 FORK \(=1\) TO1 \(\varnothing\)
490 READX1（K），Y1（K），X2（K），Y2（K）
\(50 \emptyset \operatorname{LINE}(X 1(K), Y 1(K))-(X 2(K), Y 2(K)), 13, B\)
510 NEXTK
520 K＝1
\(530 \operatorname{LINE}(25, \emptyset)-(45,16), 12, \operatorname{BF}: \operatorname{LINE}(220,187)-(200,177), 12, B F\)
540 IF INKEY \(\$=\)＂＂THENS 4 あ
550 A \(\$=\cdot " 1\)
560）FOR \(\mathrm{I}=1 \mathrm{TO8}\)
570 READX \(\$\)
\(580 \quad A \$=A \Phi+C H R \$(V A L(" \& B "+X \$))\)
590 NEXTI
606 SFRITE\＄（1）＝A\＄：＇PERSSONNAGER \({ }^{\circ} 1\)
610．\(B \$=" "\)
620 FORI \(=1708\)
630 READY\＄
\(640 \mathrm{E} \$=\mathrm{B} \$+\mathrm{CHF} \$\)（VAL（＂\＆B＂＋Y\＄））
650 NEXTI
66 SFRITE \((2)=\) B\＄：＇P＇RRSONNAGEN \({ }^{\circ} 2\)
670 DATADOD 11000
680 DATAの日111106
690 DATADロロ11000
700 DATA11111111
710 DATAOWO11665
720 DATA 06106106
750 DATAD1060D10
740 DATA11006め11
750 DATAOめめ 11000
760 DATADO111106
775 DATADOQ1100
780 DATAG日 111060
790 DATADOD 11060
806 DATAの日ळ11060

\section*{LiIT：S：T：I：N：G：S}

810 DATADOD 11000
820 DATAめO111100
830 GOSUB1240：＇CHAPEAU NOIR
840 GOSUB1560：VAMPIRES
850 REM：JEU
86ल \(S X=108: S Y=56: T X=50: T Y=32\)
87め OPEN＂GRP：＂AS\＃ 1
880 COLOR7：DRAW＂BM208，179＂：PRINT\＃1，＂Ө＂
890 DRAW＂BM160，19＂：PRINT\＃1，＂中＂
900 DRAW＂BM128，68＂：PRINT\＃1，＂＂
910 DRAW＂BM216，100＂：PRINT\＃1，＂＊＂
920 DRAW＂BM20．， 147 ＂：PRINT\＃1，＂\＆＂
930 DRAW＂BM96， 163 ＂：PRINT\＃1，＂が＂
940 IFCC \(=1\) THENRETURN
950．TIME＝ø：INTERVAL ON
965 \(X=40: Y=4\)
970 SPRITEOFF
980 IFX／2＝INT \((X / 2)\) THENFUTSFRITE2，\((X, \gamma), 16,1\) LLSEPUTSPRITE2，\((X, Y), 16,2:\) IFX／5＝INT \((X\) 15）THENFLAY＂O6BSO
990 FUTSPRITE0，\((X, Y-8), 1,3\)
\(1000 \mathrm{C}=\) STICK（1）
\(1010 X A=X: Y A=Y\)
1020 IFC \(=3\) THENX \(A=X+3\) ：IFPOINT \((X A+6, Y A+4)=\) CLTHENBEEP：\(X A=X-3\)
1030 IFC \(=7\) THENX \(A=X-3\) ：IFPOINT \((X A+2, Y A+4)=\) CLTHENBEEP：\(X A=X+3\)
104 IFC \(=1\) THENY \(A=Y-3\) ：IFYA＜ \(6 T H E N Y A=\emptyset E L S E I F P O I N T(X A+4, Y A+2)=C L T H E N B E E F: Y A=Y+3\)
1050 IFC \(=5\) THENY \(A=Y+3\) ：IFPOINT \((X A+4, Y A+b)=\) CLTHENBEEP：\(Y A=Y-3\)
1060 IFC \(=8\) THENXA \(=X-3: Y A=Y-3:\) IFYA＜DTHENYA \(=\emptyset E L S E I F P O I N T(X A+2, Y A+2)=\) CLTHENBEEF：\(X A=X\) \(+3: Y A=Y+3\)
1070 IFC \(=6\) THENX \(A=X-3: Y A=Y+3:\) IFYA＜ 1 THENYA \(=\emptyset E L S E I F P O I N T(X A+2, Y A+6)=\) CLTHENBEEF：\(X A=X\) \(+3: Y A=Y-3\)
\(108 \emptyset\) IFC \(=2\) THENX \(A=X+3: Y A=Y-3:\) IFYA＜ดTHENY \(A=\emptyset E L S E I F P O I N T(X A+6, Y A+2)=\) CLTHENBEEF：\(X A=X\) \(-3: Y A=Y+3\)
1090 IFC \(=4\) THEN \(X A=X+3: Y A=Y+3:\) IFPOINT \((X A+6, Y A+6)=\) CLTHENBEEF：\(X A=X-3: Y A=Y-3\)
\(1100 \operatorname{IFPOINT}(X+4, Y+4)=7\) IHENSTRIG（ 1 ）ON
1116 SPRITEON
\(112 \emptyset\) IF Y＜ 1 ØANDCC＞5THENINTERVALOFF：GOT0139
1130 IF POINT \((S X+4, S Y+6)=C L \quad\) THENP \(=-P X: P=\) RND \((-T\) TME \() * 2:\) IFP \(=1\) THENSY \(=(\) INT（RND \((-\) TIM E）\(*(0)+1) * 16:\) IFSY \(=\) TYTHENSY \(=5 Y+16\)
\(1140 \mathrm{SX}=5 \mathrm{X}+\mathrm{P} \mathrm{X}\)
1150 IFSX \(/ 2=\) INT \((S X / 2)\) THENFUTSFRITE3，（ \(5 X, 5 Y\) ）， \(12,4 E L S E P U T S F R I T E 3,(5 X, 5 Y), 14,5\)
1160 IF POINT \((T X+4, T Y+6)=C L\) THENPT \(=-\mathrm{PT}: R=R N D(-T I M E) * 2:\) IFR＝1THENTY \(=\)（IN）（RND \((-T I M\)
E）\(* 1()+1) * 16\) ： IFT \(Y=S Y\) THEN \(T Y=T Y+16\)
\(1170 T X=T X+P T\)
1180 IFTX \(/ 2=\) INT（TX／2）THENPUTSPRITE4，（TX，TY），6，6ELSEPUTSPRITE 4，（TX，TY），8， 7
\(1190 \operatorname{IFPOINT}(X A+4, Y A+4)=1\) THENPLAY＂02BO4B＂：GOSUB1870
\(1210 X=X A: Y=Y A\)
1220 STRIG（1）STOP：GOTO970
1230 REM：FIN DE LA BOUCLE JEU
1240 DATADDDDDDD日
1250 DATAøぁぁøøø日ळ

1276 DATAの日の0．0日g
1280 DATAB600960日

1306 DATADDO11000
1316 DATAツ911116め
132 \(\mathrm{D} 4=\mathrm{F}\)＂．
1336 FORI \(=1\) TCB

\section*{Lil：S：T：II：N：G：S＝}
```

1359 D$=D$+CHR$(VAL ("&B"+Z$))
1360 NEXTI
1370 SPRITE$(3)=D$` CHAPEAU 1380 RETURN 1390 REM:FIN DU JEU 1400 CLDSE:SEREEN1: PLAY"T20604CF2CFCFA05C2O4AFC2F8CHBCF1" 1410 STRIG(1)OFF 1420 XX=INT (TIME/60) 1430 YY=INT (XX/60):XX=XX-60*YY 1440 LDCATE10,12: FRINT"TEMPS:"; 1450 PRINTYY"mn "XX "s" 1 4 6 0 \text { IFXX +60*YY <RCTHENRC=XX +60*YY} 1470 LOCATE10, 16:PRINT"RECDRD: "RC\60"mn"RCMODG%"s" 1480 LOCATE10, 20: PFINT"ON FEJOUE": U=2 1490 PUTSPRITEO, (48+U,40), 1,3 1500 IFU/4=INT (U/4) THENFUTSFFITTE1, (48+U,48),10,1ELSEFUTSFFITE1, (48+U,48),10,2 1510 C$=INKEY$:U=U +2 1520 IFC$="N"THENCLS:END 1530 IFCq="0"THEN176 1546 GOTO1496 1550. REM:LUTINS4&5 1560 A$="'" 1570 FORI=1「D8 1580 READX$ 1590 E$=E$+CHR$(VAL (" &E"+X$)) 1600 NEXTI 1610 SPRITE$(4)=E$:SFFIITE$(6)=E$:`VAMPIREN}
1620 AD="""
1630 FDRI = 1T08
1640 READX\$
1650 F$=F$+CHFi$(VAL("&B"+X$))
1660 NEXII
1670 SFRITE$(5)=F$:SFRITE$(7)=F$: VAMF'IFENO}
1680 DATA11000011
1690 DATA@10ש\sigma\emptyset10
1700 DATA@10ஜ\emptyset%10
1710 DATA\emptyset@16010G
1720 DATA\emptysetЮ\emptyset111000
1 7 3 0 DATAOQ11110@
1740 DATA@111111%
1 7 5 0 DATAG0100106
1760?
1770 DATAg0000000
178\emptyset DATAO\emptyset1001@\emptyset
1750 DATAg\varrho111106
1800 DATAळ11111110
1810 DATA\emptysetஜ5100106
1 8 2 0 ~ D A T A D 1 0 0 \% 0 1 0 ~
1830 DATAめ1000%10
1840 DATA1100%\emptyset1:
1850 RETURN
1860) REM: INTERCEPTION DE LUTINS
1870 FLAY"T20005ABCDE":FUTSFRITE2, (40, 4), 10, 1:FUTSHR1/E2, (40, 4), 10, 2:FUTSFR17E@,
(40, -5),1, 3:X=40: Y=4:XA=4昂:YA=4:CC=1
1875 INTEFVALSTOF
1880 GOSUB880: CC=\emptyset:INTERVAL ON
1885 RETUFIN
1899 REM: CHRONO
$1910 \operatorname{LINE}(88, \dot{0})-(160,8), 1, B F$


```
1920 XX=INT (TIME/G0)
1950 YY=INT (XX/60) : XX=XX-60*YY:COLOR11
1940 DRAW"BM1\emptyset0,G":PFINT#1,USING"##";YY;:PRINI#1,"Mn";:PRINT#1,USING"##";XX;:PR!
NT#1, "s"
1959 REM: OUVERTURE ET FERMETURE DES TRAPFES
1960 LINE (X1 (K) +1,Y1 (K) +1)-(X2 (K) -1,Y2(K)-1), 4, BF
1 9 7 6 K = 1 N T ~ ( R N D ~ ( 1 ) * 1 0 ) + 1
1980 LINE (X1 (K)+1,Y1 (K) +1) - (X2 (K) -2,Y2(K)-1), 1, BF-
2000 RETUF'N
2010 RESTOFE2110: COUFS DE FEU
2015 INTERVALSSTOP
2020 FURI=1TO6
2030 READS,SS:SOUNDS,SS
2040 NEXTI
2050 FORU=1TO4
2060 SOUND13,0
2070 FORV=0TO10\emptyset: NEXTV
208夕 NEXTU: BEEF
2090 CC=CC+1:STRIG(1) OFF
2100 YS=INT ( (Y+8)/16)*16+1
2110 LINE (X-16,YS) - (X+16,YS+10),4, BF
2115 INTEFVVALON
2126 FETURN
2 1 3 0 ~ D A T A 6 , 1 5 , 7 , 7 , 8 , 1 6 , 9 , 1 6 , 1 6 , 1 6 , 1 2 , 1 0
```


OTM 50, rue de Richelieu, 75001 PARIS. Tél: 42969395
 l'espace le plus Métro Palaıs-Royal. Du lundi au samedi de 9730 à 19 h

l'année

Fantastique...
90 Ceommodore C16

\section*{Memoire andard dont $12 \mathrm{~K} p=$ - जort the RAM 16 K standardisateur. en Basic par luec systeme dexplatises ROM interpreteur integrés.
 COMMODORE

Exclusivit ayil

 le.
 }

Echange programmes MSX. M Renaud Urbinelli, 77, rue des Blanches Fleurs 21200 Beaune. Tél. : 80.22.16.16 Poste 40.

Cherche programmes et bidouilles afin de progresser. Ecrire à : Jean Lasson, 38 bis, rue Emile Zola, 02100 Saint-Quentin.
Vends cartouche MSX "Antartic Adven ture" Prix : ISO E. Tel. : 34.72.40.05 apres 19 heures.

Vends micro d'initiation Alice +ext $16 \mathrm{Ko}+$ magnéto + livres + numbrew programmes + tous cảbles. Prix: 950 F Stéphane Mellet, 412 cours Emile Zola; 69100 Villeurbanne. Tel. : 78.85.23.60.
Vends Spectravidéo 318, Petritel + 15 Kn + magnéto +80 logiciels + DOC. Prix 3500 F. F.M. Jorge $93230 . \mathrm{Tel}$. : (I) 48.46.96.33.

Vends Yashica YC $6464 \mathrm{KO}+7$ jeux dont 3 cartouches (Konami's Tennis, The Hobbit, Hyper-Olympic 2, etc.) + lecteur de cassettes + livre 102 programmes pour MSX + Libre de Basic + nombreux programmes + un abonnement d'un an à MSX Magazine et à Standard MSX. 3600 F. Jean-Emmanuel Cathelin, 92 , rue Jeanne d'Arc, 75013 Paris. Tél. : (1) 45.84.77.06.

Enfants d'informaticien aides par leur père, possèdant MSX Sony, cherchent autres MSX pour échanger : idées, astuces, projets, programmes et concevoir des logiciels pour vidéotexte par Minitel. C. Bouquet, 8, rue des Lilas, 94240 1'Hay-les-Roses. Tel. : 46.86.14.83.

Vends Yamaha 503 F MSX + nombreux programmes (cartouches et cassettes) et plusieurs livres: 2500 F . Tel.: (1) 42.64.83.79 aux heures de bureaux. M. Kolli.

Vends $\mathrm{ZX} 81+16 \mathrm{KO}+$ inversion video + reset + boiltier + nombreux listings jeux el utilitaires +123 logiciels sur cassettes +4 manuels. Prix : 1000 F. Tél. (1) $42.83,20.94$ apres 20 h . Laurent Pavoine, 76, avenue Raspail, Saint-Maur-des-Fausses 94100
Vends ou echange logiciels sur MSX Hero, 737 Flight Simulator Return to Eden, Hyper Sport 1. Stephane au 46.77.63.87.

Vends Yeno sc 3000, ordinateur familial avec eartouche Basic III 16 K , extensible 48 K , manuel et transformateur. Prix 1300 F J-P. Fevillet, 3, rue Picasso, 93370 Montfermeil. TÉl. : 43.32.93.83.
Vends ordinateur ZX Spectrum $48 \mathrm{~K}+$ Peritel + vingt cassettes +10 livres + tous cables: 1000 F. Possibilites d'échanges contre TV Couleur Peritel ou accessoires Amsirad. Tel. $13,90,85.55$ B. Herard

A vendre Yeno SC 3000 avec Peritel pour TV +7 cancties de jeux + 120 programmes + livres divers. Pris 12000) J. Macri, 2, bd J. Rostand, 1920 Saim Mitre-les-Remparts. Tel. (16) 42.80 .95 . 89 le soin

Vends 7199 4/A Plritel ave jopsick cable magnetique, bavic etendu, eutenilial $32 \mathrm{~K}+$ modules: fool, ethecs, videoge 44 mes 1. Adventure fare trois catuetim),

cassettes Hebdogicie: n^{0} : $14+15$ groprammes

 res d'Heodogivels. Le ot $;<8500$ bM. Lamcs Bourges.
Vends Yuma
cassettes

che si220 Charatos ing. isxily

Particuler raci ectie tast lofidthent

ex ammes interesernts. Doniakers

 Mericoun.A vendre: MSX SH7 728 (64 JCO), di ble drive $2 \times 360 \mathrm{KO}+6$ 6an tiontal ame ne 2 -imprimerine thermigue canun

srayon sptique +2 ioymicks dificrenis + mannito cassette + logiviels dont en traitement de, exte professiomiel, une base de donnes, un traitement de graphiques +10 liveres de qualité Prix: | ques +10 hives de qualite Prix: |
| :--- |
| 10000 F. 40.20 .43 .56 apres 18 heures. |

Echange nombreux programmes sur MSX. Contactez Busso D., 23, rue Georges Clémenceau, 77400 Thoiry.

A vendre moitié prix logiciels suivants : Cube Basic, H.E.R.O. Pitfall II, Les Flics, Jet Set Willy. S'adresser à Michel Lebreton, 50 , rue de Beaumont, 59510 Hem. Tél. : (16) 20.80.43.96.

Vends ZX $81+32$ KO + clavier ABS + nombreux programmes + livres + revues. A debattre au (16) 97.65.23.77. apres 19 h 30 .

Vends logiciels pour TO 770 et MO 5 . Bruno Le Noc Les Landes 35580 Guichen. Tél. : 99. 52.01 .94
Vends $\mathrm{ZX} 81+16 \mathrm{~K}+$ clavier mecanique +5 cassettes de jeux + livres de programmes : 550 F. Yves Ussel, 21, allee de la Belle Feuille, 92100 Boulogne Billancourl. Tél. : 46.04. 10.86, après 18 heures.
Vends $2 \mathrm{X} 81+16 \mathrm{~K}+4$ livres dont cours Basic +5 cassettes jeux anglais introuvables en France + cassette Vu Clac + cassette simulateur de vol + stock Car +200 listings. Prix : 1000 F. Tél.
78.45.24.65 de 17 h 30 a 20 h . Demander Denis.
Vends Atari $2600+16$ cassettes manettes neuves + transformateur neuf $1000 \mathrm{~F}, \mathrm{~T} 1$ + 49.05 .11 .45 , Demander Philippe.
Vends livies de programmes pour X 07 . Vends docs sur langage machine du $\times 07$, echange livre Micro-Application, langage machine pour CPC 464 contre Sons ef yraphismes pour CPC 464 . M. Almed. Tel. (1) 46.72.19.02
Vends MO 5 + monirear couleur Oecar MC 14 + magneto + extension musicale et manctle de jeux + trason optique + quatre cassettes pour apprendre lo flast + 1 logiciels de jrus +1 lives de jeus a programmer Io lout en revellent that Pris 56901 , plus frais d'envol Iérime
 lopme filtancourn
Vends Alari eco XL + tectsur cassutes + beaface perifel + jushek + biver de
 fome au 14.a1.71 no

Ménhisso Junior : 500 F . TéI. : à Eric, le wit ay (1) 46.86.18.29.
c correspondants pour échange de Is et idées sur MSX (possède bons dont Buck Roggers, Sorcery ...). les Nolles, Renomeix, 88100 Div. TEl. : 29.56.34.60.

ingeout vends nombreux programmes

 Dauny Erwan 49, av. Jules 3220 Châteauneuf. Tel. 0.55 le soir.Yencis, ochange ou achetre logiciels MSX mi cherche tous renseignements sur Mar1.ssore, Vends Yeno SL $3000+3$ carswohes + joystick + programmes, le toet 1400 F . Tél. : 43.66 .58 .13 a 2ictiard.
Vends cause double emploi Canon V 20 $64 \mathrm{KO}+33$ jeux sur cassettes +4 cassettes Basic +2 utilitaires +4 cartouches + programmes + magneto + cordons + listings + joysticks +2 manuels + abonnement d'un an à MSX Magarine 3900 F . Tél. : 43.02.71.02 le soir.

Cherche correspondants pour échange de logiciels trucs et astuces sur MSX (utilitaires et jeux) et recherche une imprimante sur MSX. André Legret, Ligron, 72270 Malicorne. Tél. : 43.45.72.43.

Possède Sanyo PHC 285 MSX : cherche extension mémoire a échangé avee des jeux en cassettes ou achète (a prix réduil). Vends cartouches: $250 \mathrm{~F} . \mathrm{Tel}$ 94.94.29.08.

$P_{\text {entes }} A_{\text {nnonces }}$

Envoyez-nous vos P.A. gratuites
rédigées très lisiblement à MSX
Magazine, 55, av. Jean Jaures, 75019 Paris.

Disponible dès Décembre 85

Le NEC PLUS ULTRA du "STANDARD"

256 Ko pour 2990 F"' en promo

(128 Ko RAM + 128 K V-RAM Vidéo)

- Résolution 512×212 ou 414
- 16 couleurs parmi 512 (Mode 256 couleurs)
- Disque virtuel
- Digitalisation de l'image et incrustation d'images vidéo (2).
- Deux postes cartouches pour logiciels en périphériques MSX (2).
- Horloge temps réel sauvegardée par batterie incorporée
- Compatibilité totale avec tous les logiclels et périphériques MSX 1.
- Logiclels standard professionnels traitement de texte, gestion de base de données.
- Logiciels éducatifs "Docteur Basic et M. Bug" utilltaire de mise au point et d'apprentissage du Basic (VLSI) (3) PAR
(1) PRIX DE LANCEMENT
(2) OPTION DISPONIBLE COURANT 1986
(3) VLSI (Tél. 42785600)

dififusion

ensemble: FC 200 + Nionitent + Lecteur de K7 2890 F T.T.C.

> ensemble ATMOS + Moniteur
> + Lecteur de K7 1990 F T.T.C.

CARTOUCHES MSX disponible sur stock

KING'S VALLEY
SKY JAGUAR
ANTARTIC ADVENTURE
KOAMI'S PINBALL
YIE-AR-KUNG-FU
ATHLETIQUE LAND
OLYMPIC 1
OLYMPIC 2
HYPER SPORT 1
HYPER SPORT 2
NOMBREUX LOGICIELS ET PERIPHE. RIQUES A DES PAIX SANS CONCUR-
RENCE.
Demandez notre cataloaise at notre tarif

SI vaus êtes: revendeur, collectivité locale, comité d'entreprise, établissement d' 4 Geignement, association (loi 1901), une réduction de 20 \% sur nos tarits vous sera accordéa chez tous nos concessionnaires agrés sur pred-

[^0]: Je reconnais avoir pris connaissance des statuts de l'Association et je m'engage à les respecter.

